
1CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Announcements

z Reading
– Today: 6.1-6.2.6
– Thursday: 6.3-6.4

2CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Transport Layer

z Goal: provide error free end-to-end delivery of data
– provide in-order delivery over unreliable network layer

z Issues:
– checking packet integrity
– re-transmission of lost of corrupt packets
– connection establishment and management
– addresses

• need to define a host plus process
• typical abstraction is <host, port>

3CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Duplicate Packets

z Issue: packets can be lost or duplicated
– need to detect duplicates
– need to re-send lost packets

• but how do we know they are not just delayed?

z Solution 1
– use a sequence number

• each new packet uses a new sequence number
• can detect arrival of stale packets

– problem: when node crashes, sequence number resets

z Solution 2
– use a clock for the sequence number

• clocks don’t reset on reboot, so we never lose sequence #
– use a max lifetime for a packet

• permits clocks to roll over
– can get into forbidden region

4CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Three-way Handshake

z Use different sequence number spaces for each direction
z Three messages used

– Connection Request
• send initial sequence number from caller to callee

– Connection Request Acknowledgment
• send ACK of initial sequence number from caller to callee
• send initial sequence number from callee to caller

– First Data TPDU
• send ACK of initial sequence number from callee to caller

z Each Side Selects an initial number
– it knows that the number is not currently valid

• uses time of day
• limits number of connects per unit time, but not data!

5CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Example of Three-way Handshake

T
im

e

DATA (seq = x, ACK = y)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

REJECT (ACK = y)

DATA (seq = x,ACK = z)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

REJECT (ACK = y)

ACK (seq = y, ACK = x)

CR (seq = x)

Host 1 Host 2

Old duplicate

Old duplicate

Old duplicate

(a) (b)

(c)
From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

6CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Closing a Connection

z To prevent data loss,
– both sides must agree they are done

z Problem: how to agree
– possible that “I am done” messages will get lost
– possible that “I ACK you are done” messages will get lost

z Solution:
– initiator sends Disconnect Request, start DR timer
– when initiated party receives DR, send DR and start DR timer
– when initiator gets DR back, send ACK and release connection
– when initiated gets ACK, release connection
– if initiator times out, send new DR
– if initiated times out, release connection

7CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Connection Close Example
DR

ACK

ACK

Host 1 Host 2

DR

DR

Send DR
+ start timer

Send DR
+ start timer

Send ACK

Release
connection

(Timeout)
release

connection

(Timeout)
release

connection

(N Timeouts)
release

connection

(Timeout)
send DR

+ start timer

Release
connection

DR

DR

Host 1 Host 2

DR

Send DR
+ start timer

Send DR &
start timer

Send DR &
start timer

Send DR &
start timer

Send ACK
Release

connection

Release
connection

DR

ACK

Host 1 Host 2

DR

Send DR
+ start timer

Send DR
+ start timer

Send ACK

Release
connection

Lost

Lost

(Timeout)
send DR

+ start timer

DR

Host 1 Host 2

Send DR
+ start timer

Lost

Lost

(a) (b)

(c) (d)
From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

8CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Lingering Half-Duplex Connections

z If a party (or a link) dies
– can be left with dead connections

z Solution: use keep-alive packets
– every n seconds, send a packet
– if no packet is received after n * m seconds, cleanup

9CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Sliding Window Protocol

z Need to
– have multiple outstanding packets
– limit total number of outstanding packets
– permit re-transmissions to occur

z Sliding Window
– permit at most N outstanding packets
– when packet is ACK’d advance window to first non-ACK’d packet

z Retransmission
– Go-back N

• when a packet is lost, restart from that packet
• provides in-order delivery, but wastes bandwidth

– Selective Retransmission
• use timeout to re-sent lost packet
• use NACK as a hint that something was lost

10CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Sliding Window Example

0 1

0 1 2 3 4 5 6 7 8E D D D D D D

2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10

Timeout interval

Error Frames discarded by data link layer

Ac
k

0

Ac
k

1

Ack
 2

Ack
 3

Ack
 4

Ack
 5

Ack
 6

Ack
 7

0 1

0 1 2 9 10 11 12E 3 4 5 6 7 8

2 3 4 5 6 7 8 2 9 10 11 12 13 14

Timeout interval

Error Buffered by data link layer Packets 2-8 passed
to network layer

Ack
 0

Ack
 1

Ack
 1

Ack
 1

Ack
 1

Ack
 1

Ack
 1

Ack
 1

Ack
 8

Ack
 9

Ack
 1

0

Time

(a)

(b)
From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

11CMSC 417 - S97 (lect 13) copyright 1997 Jeffrey K. Hollingsworth

Buffer Management

z Unreliable Network
– sender must buffer all un-acked packets
– receiver can buffer if space is available

• if not, drop packet and wait to re-transmission

z Buffer Size
– does one size fit all?

• are TPDUs of uniform size?
– might use a fixed size buffer smaller than max TPDU

• requires support for multiple buffers per TPDU

z Possible to decouple buffer allocation from window
– ACKs contain both buffer credits and ACKSs

z Buffer Copies
– possible for each layer to copy the buffer, but this is slow
– handoff pointers to data, but requires coordination between layers

