Announcements

• reading

- for Thursday 5.5

• midterms

- Mt #1 Tuesday March 6
- Mt #2 Tuesday April 15
- Final project design due April 11

1

Network Layer

• Responsibility

- end-to-end delivery of packets to the network
- selecting routes for the packets to take
 - implies knowledge of the network topology
- managing utilization of the links
 - provide flow control (across multiple links)
 - spread load among different routes
- Interface Design
 - should be independent of subnet technology
 - hide number, type, and topology of network from upper layers
 - export a common number plan for entire network

Connection vs. Connectionless

- Two possible designs for network layer
 - connection oriented service (ATM)
 - based on experience of telcos
 - connectionless service (IP)
 - based on packet switching (ARPANET)
- Connectionless
 - transport datagrams from source to destination
 - end-point addresses in every datagram
 - less complex network layer, more complex transport
- Connection oriented
 - also called virtual circuits
 - establish an end-to-end connection with network state
 - can use VCI (global or next hop) in each packet

Datagram vs. VC Addresses

• Datagrams

- must include full address in each packet
- addresses must be unqiue for entire network
 - don't re-use too often
 - addresses per src/dest pair
- Virtual Circuit
 - globally unique
 - requires allocation scheme to ensure its unique
 - consumes many bits per packet
 - per link
 - requires translation at each switch
 - uses fewer bits (important for small packets like ATM)

Link Failue in Virtual Circuits • Re-establish virtual circuit - router near failure can patch up link - original host/router creates new virtual circuit Virtual circuit is dropped - transport layer can handle recovery

Virtual Circuit vs. Datagram

Issue	Datagram	Virtual Circuit
Circuit setup	not needed	necessary
Addresses	full source/dest per packet	next hop vc sufficient
state	no state in network	per connection data at each router
routing	each packet individually	once at VC setup
router/link failure	a few packets may be lost	all VCs through router are terminated
congestion control	difficult	many pre-allocation and policing policies permitted

Routing: Goals

• Correctness

- packets get where they are supposed
- Simplicity
 - easy to implement correctly
 - possible to make routing choices fast (or updates easy)
- Robustness
 - failures in the network still permit communication
- Stability
 - small changes in link availability results in a small change in the routing information

• Fairness

- each host, VC, or datagram has the same chance
- Optimality
 - best possible route
 - best utilization of bandwidth

Do Routes Change During Network Operation?

- nonadaptive routing (static routing)
 - information loaded a boot time
 - never changes during network operation
- adaptive routing
 - changes in network operation alter routes
 - issue: where to get this data to make choices
 - locally from neighbors
 - globally from all routers (or a NIC network information center)
 - issue: when to change routes
 - only on topology changes (links or routers change)
 - in response to changes in load
 - issue: metric to optimize
 - distance, number of hops, estimated latency

CMSC 417 - S97 (lect 8)