
1CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Announcements

z project description was handed out
z project #1 grades will be sent by email today

– common errors:
• forget to include some .h files
• missing/wrong makefiles

– re-grades
• see the TA with a working version of your program

2CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Switching Fabric (space division)

z Cross bars are great, but require O(n2) wires
z Can use a collection of smaller cross bar switches

– penalty: a request to connect may block

n

Crossbars
N
n

N
n

×
N
n

N
n

×
N
n

Crossbars
N
n Crossbars

N
nCrossbars

N
n

k
Crossbars

N Inputs N outputs

(a) (b)

N
n

×
N
n

N
n

×
N
n

N
n

×
N
n

k
Crossbars

N Inputs N outputs

N = 16, n = 4, k = 2 N = 16, n = 4, k = 3

n × k

n × k

n × k

n × k

n × k

n × k

n × k

n × k

k × n

k × n

k × n

k × n

k × n

k × n

k × n

k × n

3CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Batcher-banyan Switching
z Banyan

– can do a “good” or “poor” job of switching due to collisions
– if the inputs are sorted, we get performance

z Batcher
– sorts traffic base on full address of destination
– compares two colliding packets and uses final destination to select

output port
– requires O(nlog2n) nodes (2x2 switching elements)

Batcher switch Banyan switch

6
5

1
4

1

5
4

6

6

5
4

1

6

5

4

1

5 5 4 1

4 1 4
6

4

1

6

1

5 5

6 6

001

100

101

110

001

100

110

001

101

100

110

4CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Project Introduction:
Implementation of ATM Network Layer

and Reliable ATM Adaptation Layer

based on a project developed by
Dr. Larry Landweber, University of Wisconsin

5CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

The Big Picture - System Structure

FTP

AAL7

ATM

UDP

FTP

AAL7

ATM

UDP
FTP

AAL7

ATM

UDP

FTP

AAL7

ATM

UDP

FTP

AAL7

ATM

UDP

6CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

The Big Picture - Flow of Data

Application
Data Message AAL7 Packet

AAL7 Trailer

ATM Cells

7CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Some Terminology

z connection-oriented -vs- connection-less
– Does it look like there is a wire?

z reliable -vs- unreliable
– Is data guaranteed to get there?

z service interface
– What a layer offers to its users.

8CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

ATM Layer

z Provides connection-oriented, unreliable service
interface

z Uses a virtual circuit mechanism
z Requires a signalling protocol
z Also needs a routing protocol

9CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

ATM Cell Format

z ATM cells are 53
bytes
– 5 bytes of header
– 48 bytes for payload

Virtual Path Identifier (VPI)

Virtual Channel Identifier (VCI)

PT CLP

CRC

4 3 28 7 6 5 1

υ VPI, CLP, and CRC
fields can be ignore for
this project

υ Possible uses of PT
– signalling cell

– last cell in packet

10CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Signalling Protocol

z Establishes full-duplex ATM virtual circuits (VC’s)
– Also used to tear them down

z Must indicate that an ATM cell is a signalling cell
– permanent virtual circuits
– special payload-type (PT) value

z Must access network routing tables
z Signalling mus be reliable

– even though UDP is not
– must do retransmission when cells are lost

11CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

ATM Signalling Example

1. connectRequest

3. connectReply4. connectReply

2. connectRequest

23 (tracy, 5000) 14 (tracy, 5123)
Incoming VCI / Host Outgoing VCI / HostVC Table

VCI

12CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

ATM Signalling Example (cont.)

Step 1 Source sends connectRequest message with
– outgoing VCI for reverse channel

– destination node’s ID

Step 2 Intermediate switch receives connectRequest message
– checks routing table to find outgoing host in forward direction

– allocates a VC table entry

– sends connectRequest message to next switch

Step 3 Destination switch responds with connectReply
– includes VCI chosen for forward channel

Step 4 Intermediate switch receives connectReply
– if connection allowed, fixes VCT and forwards another

connectReply message back to the source

13CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Signalling Design Requirements

z What are your message formats?
– connection request / reply
– disconnection request / reply

z What is protocol for:
– connection establishment?
– connection teardown?

z How to handle lost signalling cells?
z How to identify duplicate

– connection establishment
– connection teardown requests?

14CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

ATM Routing

z Signalling code needs to
– know where to forward cells for a given destination
– keep next hop information in a routing table

• separate table for each node
• each table tells next hop for every other node

z Routing Table
– stores info about how to get to different destinations
– need a routing protocol to build and maintain routing tables

z Routing Protocol
– Link-state - each node periodically floods local link costs to

all other nodes, then runs a shortest-path algorithm
– Distance-vector - each node sends its neighbors

reachability and distance info about all other nodes; if a node
learns of a shorter path, it updates its distance matrix

– OR roll your own...

15CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Adaptive Routing

z After a node failure:
– Must fix routing tables
– Sometimes must also patch VC’s without dropping the

connection

16CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

Routing Protocol Design Issues

z Must have a mechanism to detect link status
– periodically send “ping” packets
– link metric can be 1 or

z Link-state design problem:
– How to limit extent of link-state message flooding?

z Distance-vector design problem:
– How to stabilize routing tables quickly?

17CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Layer

z Provides
– connection-oriented
– reliable byte-stream service to application layer

z Uses
– connection-oriented
– unreliable service provided by ATM layer

z Like TCP

18CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Packet Format

z Each message from
application is
encapsulated in an
AAL7 packet

z A trailer is appended
for:
– Flow-control
– Acknowledgment
– Error detection

19CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Flow Control

z Goal: don’t swamp the receiver
z Receiver needs to advertise its window size (credits)
z Sender should adjust its window based on receiver’s

advertised window size
z Use sliding window protocol (like TCP)

20CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Segmentation and Reassembly

z Segmentation - outgoing
– packets must be split into ATM cells

z Reassembly - incoming
– ATM cells must be assembled into complete AAL7 packets
– inspect VCI field and assemble into appropriate packet

buffer

z Challenge: Can you minimize or eliminate copies?

21CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Checksum Computation

z Could use TCP’s algorithm
– form 1’s complement addition over 16-bit units of the

message (including the trailer)
– checksum is 1’s complement of above computation

z ... OR roll your own

22CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Reliability Issues

z Acknowledgments
– Cumulative or selective?

z Sequence numbers
– Counting what?
– How to handle wrap around?

z Retransmission of AAL7 packets
z When to drop a connection?

23CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Service Interface

int aal7_connect()
– An active request to establish a connection to a remote

Service Access Point (SAP)
– Returns a descriptor to be used in future calls to represent

an endpoint of communication
– Blocks the caller

int aal7_disconnect()
– Does what you would expect

24CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Service Interface

int aal7_listen()
– Used by servers to register a service
– Returns a descriptor used as the argument to

aal7_accept() call
– Note: this descriptor is different (it’s a SAP descriptor)

25CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Service Interface

int aal7_accept()
– Indicates that a server is willing to accept a connection from

a client
– Blocks until a connection is established
– Returns a descriptor that can be used to communicate with

the client

26CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Service Interface

int aal7_send() and aal7_recv()
– Both require a valid connection descriptor and a pointer into

a buffer
– Both block the caller

27CMSC 417 - S97 (lect 7) copyright 1997 Jeffrey K. Hollingsworth

AAL7 Service Interface

int aal7_setMaxRecvWinSize()
– Used to adjust AAL7's maximum receive-window size

int aal7_dump_vc_table()
– Causes switch to dump VC table and various statistics
– Really a gross violation of layering, but WE WANT TO SEE

YOUR TABLES!

