
Announcements

- Project #4 Due this week
- Midterm #2 is Tuesday
- No Office hours next week

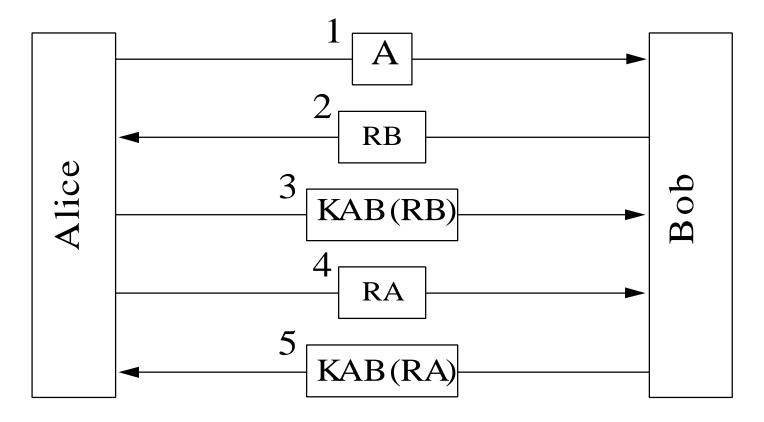
DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block n with into block n+1
 - cipher feedback mode: use 64bit shift register
 - can produce one byte at a time

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

CMSC 417 - F99 (lect21)

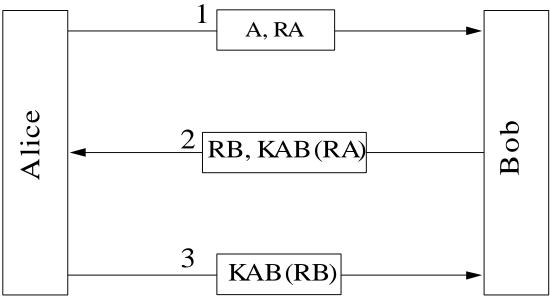
copyright 1997-9 Jeffrey K. Hollingsworth


Public Key Encryption

- Split into public and private keys
 - public key used to encrypt messages
 - publish this key widely
 - private key used to decrypt messages
 - keep this key a secret
- RSA
 - algorithm for computing public/private key pairs
 - based on problems involved in factoring large primes
 - for an n bit message P, C = ($P^e \mod n$), and P = ($C^d \mod n$)
- Other Public Key Algorithms
 - knapsack
 - given a large collection of objects with different weights
 - public key is the total weight of a subset of the objects
 - private key is the list of objects

Authentication

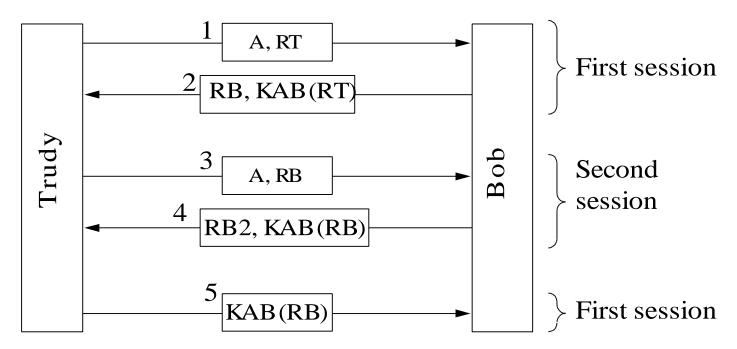
- Identify the parties that wish to communicate
- Create a session key
 - a random string
 - used only for one session
- Authentication based on Shared Keys
 - each party already shares a private key
 - exchanged via an out of band transmission
 - challenge-response
 - send a random string
 - response is the encryption of the random string with the shared key


Authentication Example

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

5

Simplified Protocol

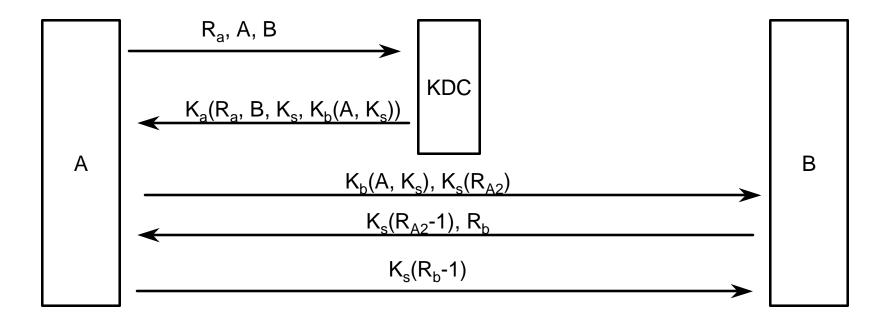


From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

- Only requires three messages
- But it is subject to a "man in the middle attack"

Attacking the Simplified Protocol

- T can get B to respond to is own challenge
- T opens a second session with B
 - it issues B's session 1 challenge back to B in session 2

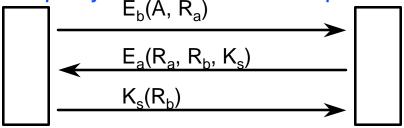


From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

Key Distribution Center

- Problem with Private Key Authentication
 - Need to establish key
 - for n people need n² keys
 - keys must be established via out-of-band communication
- Solution: Key Distribution Center (KDC)
 - trusted party used to assist in authentication
 - each party establishes a private key with the center
- have KDC trans-code a message with a session key
 - A sends to KDC <A, $K_A(B, K_s)$ >
 - KDC sends to B <K_b(A, K_s)>
 - open to replay attack
 - T logs KDC to B message and all traffic using K_s

Needham-Schroeder Authentication



- R_A, R_{A2} and R_B random strings
 - used to prevent replay attacks
- If T ever gets K_s can establish contact with B
 - can prevent this with a slight variation of the algorithm
- Used in Kerberos Authentication System

9

Authentication using Public Keys

Assume each party knows the other's public key
 <sub>E_b(A, R_a)
</sub>

- How To learn others Public Key?
 - use a public key server
 - but how do we trust the public key server?
 - have a public key for the public key server
 - possible to have man-in-the-middle attacks
 - interlock protocol
 - only send half the message (odd bits) at a time
 - prevents man-in-the-middle attacks
 - still possible to spoof service

Digital Signatures

- Want to "sign" a message such that:
 - receiver can verify the identity of the sender
 - sender cannot repudiate the contents of the message
 - receiver cannot forge a message
- Central authority (BB)
 - A sends BB A, K_a(B, R_a, t, P)
 - BB sends B $K_b(A, R_a, t, P, K_{bb}(A, t, P))$
 - everyone trusts BB
 - BB can be called on to decrypt messages to verify them
 - BB need not store all message that it validates
 - t timestamp used to prevent replay attacks
- Public Key
 - need E(D(P)) = P and D(E(P)) = P
 - A sends B $E_b(D_a(P))$
 - B keeps D_a(P) and third party can use E_a to verify it's from A

Used to prevent replay attacks when t has not changed yet (I.e. slow clock)

Digital Signatures (cont.)

Problems

- Repudiation
 - inform police that the key was stolen
 - claim the "bad guy" sent the message
- Key Changes
 - need to keep records of when keys were in use

Standards

- RSA Algorithm
 - popular with many commercial systems
- El Gamal
 - NSA/NIST Standard
 - too new, and private to have trust

Message Digests

- Goal: Send Signed Plain text
 - can use slow cryptography on signature since its short
- Need:
 - Given P, easy to compute MD(P)
 - Given MD(P), impossible to find P
 - no P and P' exist such that MD(P) = MD(P')
 - use hash functions that produce >= 128 bit digest
- Operation
 - A sends P, D_a(MD(P))
- Digest Functions
 - MD5
 - produces 128 bit digest
 - SHS
 - NSA/NIST effort
 - produces 160 bit output