Announcements

- Project #4 Due this week
- Midterm #2 Week from today in class
- No Tuesday office hours this week

Collision Management

Binary Exponential Backoff

- after collision, divide into slot times
- after first collision, wait either 0 or 1 slot times
- after second collision, wait either 0, 1, 2, or 3 slot times
- limited to 1023 slots
- after 16 collisions, link layer gives up

Performance

- each station wants to transmit with probability p, then
 - $A = k [p^{1}(1-p)^{k-1}]$
 - A --> 1/e as k --> infinity
- probability a contention interval has j slots is A(1-A)^{j-1}
- mean number of slots per contention is:

$$\sum_{j=0}^{\infty} jA(1-A)^{j-1} = \frac{1}{A}$$
 mean contention interval is then $2\tau/A$

Ethernet Performance (cont.)

• Ethernet Channel efficiency is then:

$$\frac{P}{P+2t/A} = \frac{1}{1+2BLe/cF}$$

B = bandwidth

L = cable length

c = speed of light

F = frame length

- Traffic models
 - traditional analysis assume Poisson arrival
 - recent studies have demonstrated self similar properties
 - traffic variance does not decrease with wider samples

Variations on Ethernet

- Traditional Ethernet is a bus
 - limited to one host at a time
- Switched Ethernet
 - make hub smarter
 - different ports can each form there own Ethernet segment
 - frames for other segment travel over backplane
 - individual stations retain the same card and cabling
- Token Bus
 - rings have bounded worst case times
 - token bus forms a logical ring out of a single bus

Bridges

- Split one logical LAN into multiple physical LANs
 - permit mixing types of 802.X networks
 - 100 Megabit Ethernet with 10Mbps
 - token ring with Ethernet
 - extend the physical network
 - limits on cable length
 - improve security
 - reduce traffic
- Forward traffic between the physical layers
 - regenerate the signal
 - convert between 802.X formats
 - this is non-trivial

Learning Bridges

- Transparent to users
 - traffic just gets to the correct location
 - no software configuration required
- Selectively forward traffic among segments
 - used 48bit Ethernet addresses
 - at first, forward all traffic via flooding
 - use source address to learn where a host is located
 - do not forward a packet if the destination is known to be on the local network
- need to have a spanning tree to prevent loops
 - use lowest serial number to elect root
 - compute shortest path to root as the spanning tree
 - some bridge may be disabled to ensure a tree

Source Routing Bridge

- Each host knows how to reach other hosts
 - it builds a full path to that host
- Every LAN and bridge has a number
 - a LAN has a 12 bit identifier
 - a bridge a 4 bit id
- To discover a route
 - broadcast a discovery packet
 - destination responds
 - bridges fill in their information in the response
 - results in a full path to the remote destination

Source vs. Transparent Bridges

Source Bridges

- always use optimal routes
- could exploit multiple paths between two LANs for load sharing

Transparent Bridges

- require no changes to nodes
 - nodes are now more complex
- no need to configure the bridges
 - source bridges need LAN and Bridge Ids

FDDI

Fiber base ring

- two rings, one clockwise the other counter clockwise
- use LEDs to send data

Encoding

- uses 4 of 5 encoding
- looses self clocking property of Manchester encoding
 - uses long frame header to compensate

Supports Synchronous traffic

- each sync frame has 96 bytes of data every 125μs
 - supports 4 T-1 lines
 - up to 16 synchronous slots may be used

Timers

- token holding timer: forces a node to give up the token
- token rotation timers: recovers from lost token if its not seen

Fast Ethernet

Based on hubs

- advantages of hubs rendered bus cables useless
- limits cable length to 100 meters for copper
- can be switched or use a single collision domain

Signals

- 100Base-T4
 - uses 4 pair cat 3 wiring
 - 33Mbps in each direction and two reversible channels
 - 25Mhz with trinary signaling and 4 bits per baud
- 100Base-TX
 - two pairs of cat 5 wiring
 - 125Mhz with 4bits our of 5 for data

HIPPI

- KISS based path to almost 1Gbps
 - no options
 - use copper interface
- Parallel Connection
 - 32 bits wide
 - 18 control bits
 - 50 twisted pair wires
- Connections
 - uses a cross-bar switch
 - sends in groups of 256 words
- Error checking
 - parity bit per word
 - parity word at the end of each frame
 - over the vertical 256 bits