

CMSC 417 - S99 (lect18)

copyright 1997-9 Jeffrey K. Hollingsworth

Collision Detection

• If a sender senses a collision

- stop sending at once
- apply random backoff

• "contention" period

- after contention period, there will be no collision
- send for for 2τ (max propagation delay)
 - need 2τ since might be a collision at far end at τ - ϵ

Collision Free Protocols

• Use an allocation scheme

- must be dynamic (based on load) or we are reduced to TDM
- Bit Map Reservation Protocol
 - round of allocation (contention period)
 - everyone who indicated a desire to send goes in turn
 - requires an overhead of one bit per per station per round

Binary Countdown

- reservation round send your host address
 - uses a "wired or" to compute winner
 - as soon as a station senses a 1 where it sent 0 it backs off
- winner sends packet
- gives higher priority to higher numbered hosts
 - can "rotate" station number after successful transmission

CMSC 417 - S99 (lect18)

Wireless Networks (MACA)

- Stations send data into the air
 - not all stations can "see" all other stations
- Need to avoid collisions between sender an receiver
 - possible for the sender to not be able to sense collision
- Use a two stage protocol
 - send a RTS (request to send)
 - receiver responds CLS (clear to send)
- Hosts that hear a RTS or CLS wait and don't send
 - collisions still possible since two RTS frames may collide

Ethernet Cable Options

- 10base5: Thicknet first Ethernet
 - Thick cable, doesn't bend well
 - vampire taps used to "tap" the network
 - max run is 500 meters
- 10Base2: Thin coax (cheaper net),
 - uses "T" connectors
 - max run is 200 meters
- 10baseT: twisted pair
 - uses a central hub
 - easier to find faults and problems
 - max run is 100 meters to hub

Manchester Encoding

- Problem: How to send zero/ones?
 - need to know timing information
 - when does on bit end?
- Answer: Force many transitions
 - every bit is half low and half high
 - 1 is high then low
 - 0 is low then high
 - but this doubles bandwidth
- Differential Manchester Encoding
 - better noise immunity
 - 0 is a transition at the start, 1 none
 - both transition during the middle

Collision Management

• Binary Exponential Backoff

- after collision, divide into slot times
- after first collision, wait either 0 or 1 slot times
- after second collision, wait either 0, 1, 2, or 3 slot times
- limited to 1023 slots
- after 16 collisions, link layer gives up

• Performance

- each station wants to transmit with probability p, then
 - $A = k [p^{1}(1-p)^{k-1}]$
 - A --> 1/e as k --> infinity
- probability a contention interval has j slots is A(1-A)^{j-1}
- mean number of slots per contention is:

$$\sum_{j=0}^{\infty} jA(1-A)^{j-1} = \frac{1}{A}$$
 mean contention interval is then $2\tau/A$

CMSC 417 - S99 (lect18)