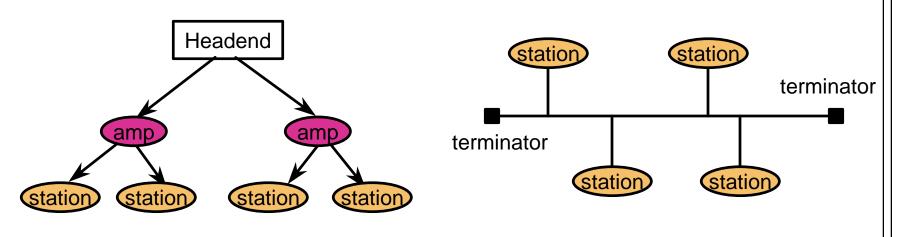
Announcements

- Reading
 - Today: Chapter 2 (2.3-2.4)

Transmission Media

Magnetic Media


- tapes hold 40GB today
- a van can carry 2,000 tapes (or 80 TB)
- want to move data from DC to Baltimore
 - 80 TB/hour = 166 Gb/sec
- what about latency?
 - get all 80TB at once
 - need to read/write all of these tapes

Twisted Pair

- copper wires (1.5 Mbps long hall)
- 100Mbps with two pairs for short distances

Transmission Media (Coax)

- copper with an insulator between it
 - 75 ohm common for T.V.
 - 50 ohm common for data transmission
- rates: 10's of Mbps baseband, 100's MPS broadband
 - supports multiple drops

Broadband Network

Baseband Network

3

Transmission Media (cont.)

Coax

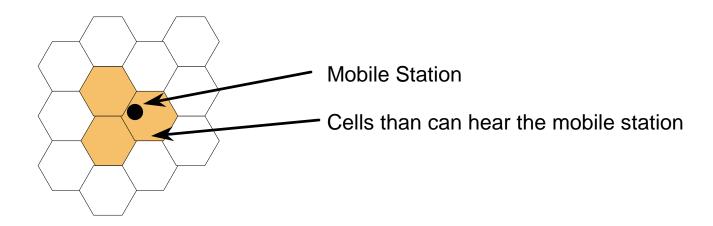
- copper with an insulator between it
 - 75 ohm common for T.V.
 - 50 ohm common for data transmission
- rates: 10's of Mbps baseband, 100's MPS broadband
- supports multiple drops

Fiber

- uses principal of total internal reflection
 - get light to "bounce" along the fiber
- point to point communication
- 100's Mbps to several Gbps

Transmission: No Cables

Microwave


- above 100MHz
- uses directional (parabolic antenna)
- with 100m towers, can space them every 80km
- security:
 - directional signal
 - can add hop-by-encryption

Infrared

- uses: television remote, computer TANs (Table Area Nets)
- signal will not pass through walls
- security:
 - signal confined to a single room
 - anyone in the room can hear the signal though

Transmission: No Cables (cont.)

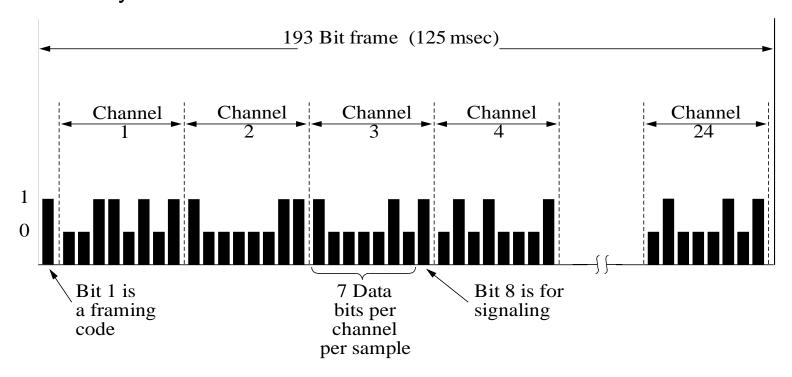
- Cellular Radio (AMPS)
 - divide service areas into cells
 - each unit talks to a base station in the cell
 - 832 duplex channels (allocated to two providers)
 - security
 - virtually none
 - easy to eavesdrop
 - ease to "clone" cell phones

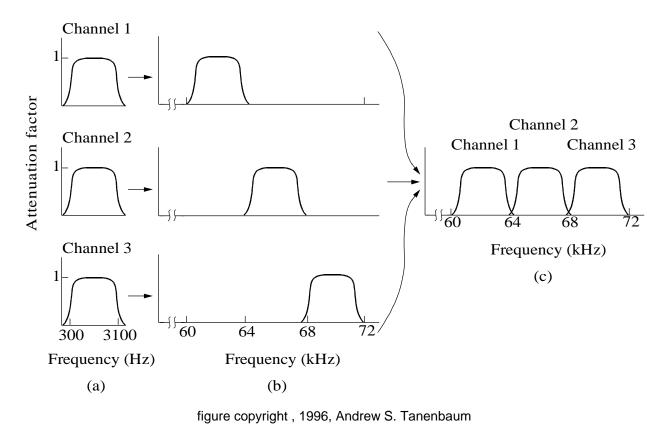
Transmission: Satellites

- Different Orbits Possible
 - orbit affects many communication properties
- Geosynchronous
 - always over the same spot on the earth
 - 36,000 Km orbit is required
 - only 180 slots possible
 - uses one uplink and one down link frequency
 - large round-trip latencies
- LEO (Low Earth Orbit)
 - each satellite keeps moving into and out of range
 - solution: use a large number of satellites
 - sort of like cells, but the cells are the ones moving
 - lower round-trip latency

Sending More Than one Signal At Once

- Called multiplexing
 - original goal of Bell was to MUX multiple telegraph signals
- Time Division Multiplexing
 - everyone gets whole bandwidth
 - but only when its their turn




figure copyright, 1996, Andrew S. Tanenbaum copyright 1996-1999 Jeffrey K. Hollingsworth

CMSC 417 - F99 (lect 16)

8

Frequency Division Multiplexing

- Frequency Division
 - everyone gets to talk at once
 - but only in their own frequency

ATM Switching

Requirements

- be able to switch 360,000 cells/sec per input link
- switch cells with as low a discard rate as possible
- never reorder the cells on a virtual circuit

Issues

- multiple cells destined for the same output at once
 - need to buffer one of them
 - must ensure fairness is maintained
- head-of-line blocking
 - possible that a blocked output is holding up cells that could be delivered