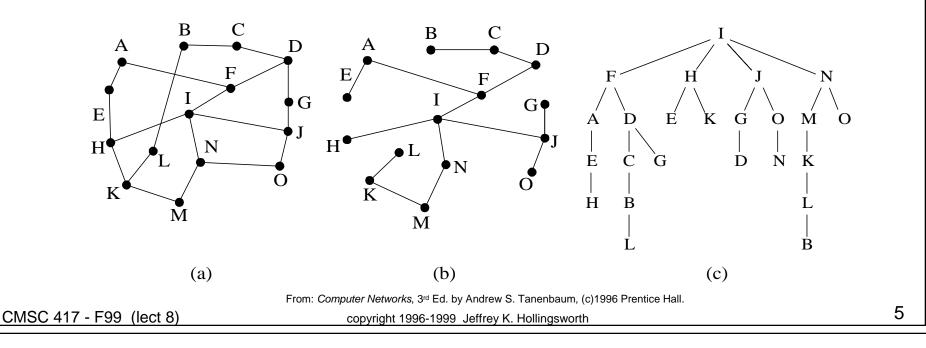


copyright 1996-1999 Jeffrey K. Hollingsworth

Hierarchical Routing

- Routing grows more complex with more routers
 - takes more space to store routing tables
 - requires more time to compute routes
 - uses more link bandwidth to update routes
- Solution:
 - divide the world into several hierarchies
 - Do I really care that router z at foo U just went down?
 - only store info about
 - your local area
 - how to get to higher up routers
 - optimal number of levels for an N router network is In N
 - requires a total of e In N entries per router

Routing for Mobility


- Or What happens when computers move?
- Two types of mobility:
 - migratory: on the net in many locations but not while in motion
 - roaming: on the net while in motion
- Basic idea:
 - everyone has a home
 - you spend much of your time near home
 - when not at home, they know where to find you
 - home agents: know where you are (or that you are missing)
 - foreign agents: inform home agents of your location
 - informs users that future communication should be sent via them (this is a huge potential security hole)

Broadcast Routing

- Sometimes information needs to go to everyone
 - routing updates in link-state
 - stock data, weather data, etc.
- sender iterates over all destinations
 - wastes bandwidth
 - sender must know who is interested
- flooding
 - see routing updates for issues
- multi-destination routing
 - routers support having multiple destinations
 - routers copy output packets to correct link(s)
- spanning tree
 - contains subset of graph with no loops
 - efficient use of bandwidth
 - requires info to be present in routers (but it is for link state)

Routing Broadcast Traffic (cont.)

- Reverse path forwarding
 - check link a packet arrives on
 - if the inbound link is the one the router would use to the source, then
 - forward it out all other links
 - else
 - discard the packet
 - requires no special data sorted in each router

Multicast Routing

• Specify a (relatively) small list of hosts to receive traffic

- may need to exchange traffic as a group
- must create/destroy group

• Using spanning trees

- prune links that are have no members of mulicast group
- for distance-vector use a variation on reverse path forwarding
 - when a router gets a message it doesn't need it send a prune message back
 - recursively prunes back un-needed subnets

core-based trees

- one tree for group not one per group member
- hosts send to "core" and it multicasts it out

Congestion

- Too much traffic can destroy performance
 - goal is to permit the network to operate near link capacity
 - can reach a knee in the packets sent vs. delivered curve

• Sources

- all traffic is destined for a single out link
 - backup in traffic consumes buffers
 - other (cross traffic) will not get through due to lack of buffers
- slow router CPU
 - can't service all requests at link speed
 - links still backup
- Often feeds on itself
 - queuing delays can cause packets to timeout
 - introduces more traffic due to re-transmissions

Congestion Control

• Two possible approaches

- open loop: prevent congestion from every happening
 - tends to be conservative and result in under utilizaion
- closed loop: detect and correct
 - some congestion will still occur until it is corrected
- Open loop
 - request resources before using them
 - global (or regional) resource allocation
 - responds yes or no to each request for service
- Closed loop
 - monitor network to detect congestion
 - pass information back to location where action can be taken
 - adjust system operation to correct the problem

Responding to Congestion

• Add more resources

- dialup network: start making additional connections
- SMDS: request additional bandwidth from provider
- split traffic: use all routes not just optimal
- Decrease load
 - deny service to some users: based on priorities
 - degrade service to some or all users
 - require users to schedule their traffic