
1CMSC 417 - F99 (lect 7) copyright 1996-1999 Jeffrey K. Hollingsworth

Announcements

l Reading
– Today: Pthreads book - Chapters 2 & 3

l Photos were taken of the class

2CMSC 417 - F99 (lect 7) copyright 1996-1999 Jeffrey K. Hollingsworth

Pthreads

l Allows multiple threads of control on a process
l Basic operations:

– pthread_create(&threadId, attr, func, arg)
• creates a new thread
• threadid is the id of the new thread
• attr are special attributes of the thread (pass NULL)
• Func is a pointer to a function to run
• arg is an argument to that function

– first thread of control must not exit (will kill other threads)
• pthread_join(threadid, status)

– wait for a specific thread to terminate

3CMSC 417 - F99 (lect 7) copyright 1996-1999 Jeffrey K. Hollingsworth

Using Locks for the Critical Section

l Lock:
– if no thread has the lock mark it locked and return
– if another thread has the lock, wait

l Unlock:
– release the lock
– if other threads waiting, notify one or all of them

l Called mutexs in pthreads
– pthread_mutex is the data type
– pthread_mutex_init used to initialize it
– pthread_mutex_lock locks it
– pthread_mutex_unlock releases it

l Lock Grainularity
– want to lock enough to protect accesses
– don’t want to lock too much to slow down the program

4CMSC 417 - F99 (lect 7) copyright 1996-1999 Jeffrey K. Hollingsworth

Condition Variables
l Allow threads to wait on the value of a variable

– wait until the list is non-empty for example
– allows one thread to signal to another thread that something has changed

• threads may sleep waiting to be notified of this change

l Can unlock and re-lock a mutex before/after suspend

wait for count to be >= 1

 pthread_mutex_lock(&count_mutex);

 while (count <= 0) {

 pthread_cond_wait(&count_condvar, &count_mutex);

 }

 pthread_unlcok(&count_mutex);

update count:

 pthread_mutex_lock(&count_mutex);

 count++;

 pthread_mutex_unlock(&count_mutex);

 pthread_cond_signal(&count_condvar);

5CMSC 417 - F99 (lect 7) copyright 1996-1999 Jeffrey K. Hollingsworth

Consider the following program

T1:
count++ -- in C one statement, but really multiple instructions

load r1, count
add r1, 1, r1
store r1, count

T2:
count++ -- in C one statement, but really multiple instructions

load r2, count
add r2, 1, r2
store r2, count

What happens when T1 is preempted right after the load

6CMSC 417 - F99 (lect 7) copyright 1996-1999 Jeffrey K. Hollingsworth

With Synchronization

T1:
pthread_mutex_lock(&mylock)
count++
pthread_mutex_unlock(&mylock)

T2:
pthread_mutex_lock(&mylock)
count++
pthread_mutex_unlock(&mylock)

Only one thread at a time gets to update the count

7CMSC 417 - F99 (lect 7) copyright 1996-1999 Jeffrey K. Hollingsworth

Queue Project

l Need to coordinate access to shared resources
– use mutex to guard access to a shared data structure

l Queue abstraction is very useful
– enqueue: add item to queue
– dequeue: remove item, block if not ready
– head: return head of queue without dequeue
– probe: test if the queue is empty

– must use a mutex to protect access to queue
– build a producer/consumer test program

l Multiple application threads
– our test application is multi-threaded
– must be able to support multiple threads trying to en-queue

8CMSC 417 - F99 (lect 7) copyright 1996-1999 Jeffrey K. Hollingsworth

Link State Routing

l Used on the ARPANET after 1979
l Each Router:

– computes metric to neighbors and sends to every other router
– each router computes the shortest path based on received data

l Needs to estimate time to neighbor
– best approach is send an ECHO packet and time response

l Distributing Info to other routers
– each router may have a different view of the topology
– simple idea: use flooding
– refinements

• use age sequence number to damp old packets
• use acks to permit reliable delivery of routing info

