Announcements

• Reading

- Today: Chapter 5 (5.2), Pthreads book Chapter 1
- Thursday: Pthreads book Chapters 2 & 3
- Program #2 was distributed

Do Routes Change During Network Operation?

- nonadaptive routing (static routing)
 - information loaded a boot time
 - never changes during network operation
- adaptive routing
 - changes in network operation alter routes
 - issue: where to get this data to make choices
 - locally from neighbors
 - globally from all routers (or a NIC network information center)
 - issue: when to change routes
 - only on topology changes (links or routers change)
 - in response to changes in load
 - issue: metric to optimize
 - distance, number of hops, estimated latency

CMSC 417 - F99 (lect 6)

Optimality Principal

- If J is on the optimal route from I to K
 - then the optimal route from I to K shares the optimal route from J to K
- transitive result of this is a sink tree
 - can construct a tree from all nodes to a specific node

3

Shortest Path Routing

Graph Representation

- nodes are routers
- arcs are links
- to get between two routes, select a the shortest path
- need to decide metric to use for minimization

• Dijkstra's Algorithm

select source as current node while current node is not destination foreach neighbor of current if route via current is better update its tentative route label node with <distance, current Node> find tentative node with shortest route mark a permanent make it current

CMSC 417 - F99 (lect 6)

copyright 1996-1999 Jeffrey K. Hollingsworth

Flood Routing

- Every Incoming packet is resent on every outbound link
- generates many duplicate packets
- potentially infinite packets unless they are damped
 - multiple paths to the same destination result in loops
 - can use a lifetime (max hops) to damp traffic
 - can also keep track in routers if the packet has been seen
- good metric to compare algorithms
 - flooding always chooses the shortest path
 - must ignore overhead and congestion due to flooding

Flow-Based Routing

Compute optimal routes off-line if we know in advance:

- link capacity
- topology
- traffic for foreach <src,dest> pair
- Testing a routing table:
 - given a tentative routing table
 - for each link we can compute mean delay

$$T = \frac{1}{\mathbf{m}C - \mathbf{l}}$$

- C is link capacity bps, 1/ $\!\mu$ is mean packet size, λ is actual traffic in packets/sec
- then compute overall utilization (as mean or max of delays)
- possible to exhaustively try all routing tables this way

CMSC 417 - F99 (lect 6)

Distance Vector Routing

- Also known as Bellman-Ford or Ford-Fulkerson
 - original ARPANET routing algorithm
 - early versions of IPX and DECnet used it too
- Each router keeps a table of tuples about all other routers
 - outbound link to use to that router
 - metric (hops, etc.) to that router
 - routers also must know "distance" to each neighbor
- Every T sec., each router sends it table to its neighbors
 - each router then updates its table based on the new info
- Problems:
 - fast response to good news
 - slow response to bad news
 - takes max hops rounds to learn of a downed host
 - known as count-to-infinity problem