
1CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth

Announcements

l Reading
– Today: Chapter 5 (5.2), Pthreads book - Chapter 1
– Thursday: Pthreads book - Chapters 2 & 3

l Program #2 was distributed

2CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth

Do Routes Change During Network
Operation?

l nonadaptive routing (static routing)
– information loaded a boot time
– never changes during network operation

l adaptive routing
– changes in network operation alter routes
– issue: where to get this data to make choices

• locally from neighbors
• globally from all routers (or a NIC - network information

center)
– issue: when to change routes

• only on topology changes (links or routers change)
• in response to changes in load

– issue: metric to optimize
• distance, number of hops, estimated latency

3CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth

Optimality Principal

l If J is on the optimal route from I to K
– then the optimal route from I to K shares the optimal route

from J to K

l transitive result of this is a sink tree
– can construct a tree from all nodes to a specific node

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

B

A

F

D E
C

J

N

O

I
H

G

L

M

K

(a)

B

A

F

D E
C

J

N

O

I
H

G

L

M

K

(b)

4CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth

Shortest Path Routing

l Graph Representation
– nodes are routers
– arcs are links
– to get between two routes, select a the shortest path
– need to decide metric to use for minimization

l Dijkstra’s Algorithm
select source as current node
while current node is not destination

foreach neighbor of current
if route via current is better update its tentative route
label node with <distance, current Node>

find tentative node with shortest route
mark a permanent
make it current

5CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth

Shortest Path Example

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

A D1

2

6

G

4

(a)

F (∞ , -) D (∞ ,-)

A

B 7 C

2

H

3 3

2
2 FE

1

22

6

G

4

A

(c)

A

B (2, A) C (9, B)

H (∞ , -)

E (4, B)

G (6, A)

F (6, E) D (∞ ,-)A

(e)

A

B (2, A) C (9, B)

H (9, G)

E (4, B)

G (5, E)

F (6,E) D (∞ ,-)A

(f)

A

B (2, A) C (9, B)

H (8, F)

E (4, B)

G (5, E)

F (6, E) D (∞ ,1)A

(d)

A

B (2, A) C (9, B)

H (∞ , -)

E (4, B)

G (5, E)

F (∞ , -) D (∞ , -)A

H

E

G
(b)

B (2, A) C (∞ , -)

H (∞ , -)

E (∞ , -)

G (6, A)

6CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth

Flood Routing

l Every Incoming packet is resent on every outbound link
l generates many duplicate packets
l potentially infinite packets unless they are damped

– multiple paths to the same destination result in loops
– can use a lifetime (max hops) to damp traffic
– can also keep track in routers if the packet has been seen

l good metric to compare algorithms
– flooding always chooses the shortest path
– must ignore overhead and congestion due to flooding

7CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth

Flow-Based Routing

l Compute optimal routes off-line if we know in advance:
– link capacity
– topology
– traffic for foreach <src,dest> pair

l Testing a routing table:
– given a tentative routing table
– for each link we can compute mean delay

– C is link capacity bps, 1/µ is mean packet size, λ is actual traffic in
packets/sec

– then compute overall utilization (as mean or max of delays)
– possible to exhaustively try all routing tables this way

T
C

=
−

1
µ λ

8CMSC 417 - F99 (lect 6) copyright 1996-1999 Jeffrey K. Hollingsworth

Distance Vector Routing

l Also known as Bellman-Ford or Ford-Fulkerson
– original ARPANET routing algorithm
– early versions of IPX and DECnet used it too

l Each router keeps a table of tuples about all other routers
– outbound link to use to that router
– metric (hops, etc.) to that router
– routers also must know “distance” to each neighbor

l Every T sec., each router sends it table to its neighbors
– each router then updates its table based on the new info

l Problems:
– fast response to good news
– slow response to bad news

• takes max hops rounds to learn of a downed host
• known as count-to-infinity problem

