Announcements

- Reading
 - Today: Chapter 5 (5.1-5.2)
- Program #1 Due at 10 PM not 10AM
- Notes on the project have been posted to the web
- Note on CRC example from last time:
 - a generator of degree r has as it's largest term x^r (or r+1 bits) so the example in the notes is fine.

Simple Link Protocols Stop-and-wait - Sender while (1) { get frame from network layer; send frame; wait for ack; Receiver: while (1) { recv frame; send frame to network layer; send ack; Only one side active (sending) at once Ensures rate matching

Sliding Window Protocol

Need to

- have multiple outstanding packets
- limit total number of outstanding packets
- permit re-transmissions to occur
- Sliding Window
 - permit at most N outstanding packets
 - when packet is ACK'd advance window to first non-ACK'd pkt

Retransmission

- Go-back N
 - when a packet is lost, restart from that packet
 - provides in-order delivery, but wastes bandwidth
- Selective Retransmission
 - use timeout to re-sent lost packet
 - use NACK as a **hint** that something was lost

CMSC 417 - F99 (lect 3)

Network Layer

• Responsibility

- end-to-end delivery of packets to the network
- selecting routes for the packets to take
 - implies knowledge of the network topology
- managing utilization of the links
 - provide flow control (across multiple links)
 - spread load among different routes
- Interface Design
 - should be independent of subnet technology
 - hide number, type, and topology of network from upper layers
 - export a common number plan for entire network

Connection vs. Connectionless

- Two possible designs for network layer
 - connection oriented service (ATM)
 - based on experience of telcos
 - connectionless service (IP)
 - based on packet switching (ARPANET)
- Connectionless
 - transport datagrams from source to destination
 - end-point addresses in every datagram
 - less complex network layer, more complex transport
- Connection oriented
 - also called virtual circuits
 - establish an end-to-end connection with network state
 - can use VCI (global or next hop) in each packet

Datagram vs. VC Addresses

• Datagrams

- must include full address in each packet
- addresses must be unqiue for entire network
 - don't re-use too often
 - addresses per src/dest pair

• Virtual Circuit

- globally unique
 - requires allocation scheme to ensure its unique
 - consumes many bits per packet
- per link
 - requires translation at each switch
 - uses fewer bits (important for small packets like ATM)

Link Failue in Virtual Circuits Re-establish virtual circuit - router near failure can patch up link original host/router creates new virtual circuit Virtual circuit is dropped - transport layer can handle recovery 8 CMSC 417 - F99 (lect 3) copyright 1996-1999 Jeffrey K. Hollingsworth

Virtual Circuit vs. Datagram

Issue	Datagram	Virtual Circuit
Circuit setup	not needed	necessary
Addresses	full source/dest per packet	next hop vc sufficient
state	no state in network	per connection data at each router
routing	each packet individually	once at VC setup
router/link failure	a few packets may be lost	all VCs through router are terminated
congestion control	difficult	many pre-allocation and policing policies permitted

Routing: Goals

Correctness

- packets get where they are supposed
- Simplicity
 - easy to implement correctly
 - possible to make routing choices fast (or updates easy)
- Robustness
 - failures in the network still permit communication
- Stability
 - small changes in link availability results in a small change in the routing information

• Fairness

- each host, VC, or datagram has the same chance
- Optimality
 - best possible route
 - best utilization of bandwidth