
Announcements

- Enrollment
 - Now 6 on the waitlist
- Reading
 - Chapter 3 (3.1-3.3)

Project #1 Notes

Ports

- End-points for communication
- How to identify a processes rather than a machine

Debugging

learn to use the debugger (ladebug)
check that what you send it what you think you send
print data just before it is sent

Gigabit Testbeds

- The Internet was taking, now what is next?
- A series of small projects to test new ideas
 - a "government gigabit" (622 Mbps)
- Issues:
 - the speed of light is fixed
 - round-trip coast to coast is 40msec
 - need for very high speed point-to-point connections
 - tele-medicine
 - video
 - coupling high-end computational resources

Telco Data Networks

• X.25

- low speed (up to 64kbps) packet switched network
- provides connection oriented services
 - call an end-point and hold the connection

ISDN

- slow speed (up to 128kbps) network
- runs over a single copper pair
- still connection oriented

B-ISDN

- higher speed version of ISDN
- connection oriented

Data Link Layer

- Goal: transmit error free frames over the physical link
- Sample Issues:
 - how big is a frame?
 - can I detect an error in sending the frame?
 - what demarks the end of the frame?
 - how to control access to a shared channel?
- Examples:
 - Ethernet framing

Frames

- Slice Raw bit stream up into frames
 - need to have manageable unit of transmission
- Frame Boundary
 - How do we know when a frame ends?
 - Character count
 - header indicates number of bytes
 - problem: what if the header is corrupt, can't tell end of frame
 - Special character
 - ASCII: DLE STX ... DLE STE
 - need to use character stuffing to send DLE characters
 - send two DLE to indicate a DLE
 - Special bit pattern no longer tied to ASCII
 - 01111110 indicates end of frame
 - need to use bit stuffing to send 011111110 as data
 - insert 0 after 5 1's
 - use link level invalid bit patterns
 - some bits may not be valid

Other Link Functions

Error Control

- may want to do sequence numbers and re-transmission
- this introduces overhead, but useful if probability of failure is high

Flow Control

- provide rate matching between sender and receiver
- sender has rules about when it can send: credits, etc.

Error Correcting Codes

- Idea: add redundant information to permit recovery
 - this is the dual of data compression (remove redundancy)
- Hamming distance (n)
 - number of bit positions that differ in two words
 - key idea: need n single bit errors to go from one word to the other
 - to detect d errors, need a hamming distance of d+1 from any other valid word.
 - to recover d errors, need a hamming distance of 2d + 1
 - any error of d bits is still closer to correct word
- Parity bit
 - ensure that every packet has an odd (or even) # of 1's
 - permits detection of one 1 bit error