
Announcements

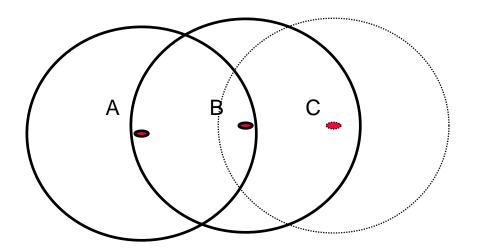
- Homework #3 due Th. Dec. 4, 1997
 - Ch 3: 1, 5, 7, 25
 - Ch 4: 1, 19, 22
- Midterm #2 was returned
 - average: 64.1
 - Standard Dev: 15
 - Re-grade requests (in writing) are due by Tuesday 12/2 at 11 AM
- Project Proposals were returned
 - average: 65.7
 - Standard Dev: 23.5
 - Re-grade requests (in writing) are due by Tuesday 12/2 at 11 AM
- Reading
 - Today: 4.1-4.2.6 & 4.3
 - Next Tuesday: 4.4 & 4.5

Carrier Sense Multiple Access

- look before you leap!
 - don't send if someone else is sending
- collisions are still possible
 - propagation delay induces uncertainty into sensing
 - possible two hosts both start sending at the same time
- persistence: when to send after detecting channel in use
 - 1-persistent
 - as soon as the channel is free, starting sending
 - nonpersistent CSMA
 - if channel is sensed busy, wait a random time and try again
 - p-persistent CSMA
 - if slot is idle send with probability p, else wait for next idle slot

CMSC 417 - F97 (lect 22)

copyright 1997 Jeffrey K. Hollingsworth


Collision Detection

- If a sender senses a collision
 - stop sending at once
 - apply random backoff
- "contention" period
 - after contention period, there will be no collision
 - send for for 2τ (max propagation delay)
 - need 2τ since might be a collision at far end at τ – ϵ

Collision Free Protocols

- Use an allocation scheme
 - must be dynamic (based on load) or we are reduced to TDM
- Bit Map Reservation Protocol
 - round of allocation (contention period)
 - everyone who indicated a desire to send goes in turn
 - requires an overhead of one bit per per station per round
- Binary Countdown
 - reservation round send your host address
 - uses a "wired or" to compute winner
 - as soon as a station senses a 1 where it sent 0 it backs off
 - winner sends packet
 - gives higher priority to higher numbered hosts
 - can "rotate" station number after successful transmission

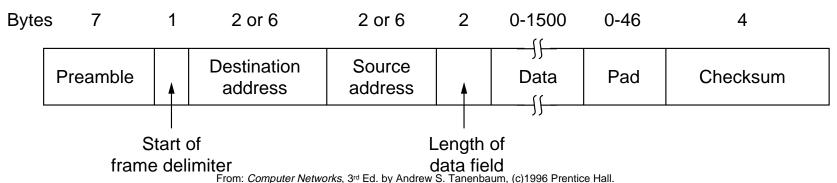
Wireless Shared Channels

- Every node may node be in range of every other node
 - a is in range to send to b, but not c
 - b can send to a or c
 - c can send to b
- Collisions
 - carrier sense will not work due to range
 - must avoid any host sending that is in rang of sender or receiver

6

Wireless Networks (MACA)

- Stations send data into the air
 - not all stations can "see" all other stations
- Need to avoid collisions between sender an receiver
 - possible for the sender to not be able to sense collision
- Use a two stage protocol
 - send a RTS (request to send)
 - receiver responds CLS (clear to send)
- Hosts that hear a RTS or CLS wait and don't send
 - collisions still possible since two RTS frames may collide


Ethernet Cable Options

- 10base5: Thicknet first Ethernet
 - Thick cable, doesn't bend well
 - vampire taps used to "tap" the network
 - max run is 500 meters
- 10Base2: Thin coax (cheaper net),
 - uses "T" connectors
 - max run is 200 meters
- 10baseT: twisted pair
 - uses a central hub
 - easier to find faults and problems
 - max run is 100 meters to hub

Manchester Encoding

- Problem: How to send zero/ones?
 - need to know timing information
 - when does on bit end?
- Answer: Force many transitions
 - every bit is half low and half high
 - 1 is high then low
 - 0 is low then high
 - but this doubles bandwidth
- Differential Manchester Encoding
 - better noise immunity
 - 0 is a transition at the start, 1 none
 - both transition during the middle

Ethernet Frame Format

- Preamble used to sync clock
- Addresses
 - 48 bits
 - if it starts with a 0 it is globally unique (assigned by IEEE)
 - if it starts with a 1 it is locally unique
- Length
 - 0 to 1500 bytes
 - min length is 46 bytes
 - ensures frame reaches end of cable before end of frame is sent
- Checksum
 - 32 bit CRC to detect garbled data at link level

10

Collision Management

Binary Exponential Backoff

- after collision, divide into slot times
- after first collision, wait either 0 or 1 slot times
- after second collision, wait either 0, 1, 2, or 3 slot times
- limited to 1023 slots
- after 16 collisions, link layer gives up

Performance

- each station wants to transmit with probability p, then
 - $A = k [p^{1}(1-p)^{k-1}]$
 - A --> 1/*e* as k --> infinity
- probability a contention interval has j slots is A(1-A)^{j-1}
- mean number of slots per contention is:

$$\sum_{j=0}^{\infty} jA(1-A)^{j-1} = \frac{1}{A}$$
 mean contention interval is then $2\tau/A$

Ethernet Performance (cont.)

Ethernet Channel efficiency is then:

$$\frac{P}{P+2\tau/A} = \frac{1}{1+2BLe/cF}$$

B = bandwidth

L = cable length

c = speed of light

F = frame length

- Traffic models
 - traditional analysis assume Poisson arrival
 - recent studies have demonstrated self similar properties
 - traffic variance does not decrease with wider samples