Announcements

• Homework #3 is

- Reading
 - Today: 3.5-3.6

Error Detection

- Less bits are required
 - if errors are infrequent, then then this works better
 - assumes that re-transmission is possible
- Cyclic Redundancy Codes (CRC)
 - Use a generator function G(x) of degree r
 - let M' be the message with r 0's on the end of it
 - divide M' into G(x) and compute remainder
 - use this as the r bit CRC code
 - a code with r bits will detect all burst errors less than r bits
 - several G's are standardized
 - CRC-12 = $x^{12} + x^{11} + x^3 + x^2 + x + 1$
 - CRC- $16 = x^{16} + x^{15} + x^2 + 1$
 - CRC- CCITT = $x^{16} + x^{12} + x^5 + 1$
 - 16 bit CRC will catch
 - all single and double bit errors
 - all errors with an odd number of bits
- CMSC 417 F97 (lect all burst errors of length less than 16

CRC Example

Frame : 1101011011

Generator: 10011

Message after appending 4 zero bits: 1 1 0 1 0 1 1 0 0 0 0

Transmitted frame: 110101111110

PPP Protocol

- Link Protocol for Serial Lines
 - Supports multiple network protocols: IP, IPX, CLNP, ...
 - designed for dialup or leased lines
- Link Establishment
 - configure- request: list of proposed options and values
 - configure- {ack/nack}: will (won't) use the requested option
 - NCP protocol
 - per network level protocol
 - used to establish network attributes (e.g. addresses)

1	1	1	1 or 2	variable	2 or 4	1
				payload	checksum	
01111110	11111111(0001110			(1111110

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

ATM Datalink Protocol

- Header
 - use CRC over the 32 bits of the header
- How to find cell boundary?
 - use shifty register to check for valid checksum
 - 1/256 chance of a random match
 - use HUNT mode to increase chances
 - after a good cell, skip to the next cell boundary
 - must receive δ cells with checksum matches
- Detecting loss of synchronization
 - one bad cell is probably an error
 - many bad cells is likely a slip (loss of sync)
 - if α bad cells are seen in a row, switch to hunt mode

Medium Access Layer

Broadcast Networks

- share a common resource for communication
 - bus, wire, air, etc.
- need to coordination access to this resource

Limits of Static Channel Allocation

- suitable for constant rate traffic of similar speeds
- however, bursty traffic results in poor channel utilization
- consider one queue vs. separate queues for each person
 - n queues with bursty arrival have mean delay n times 1 queue

Dynamic Allocation

- only use channel when have something to send
- need to control access to the channel

Shared Channel Model

Station model

- N independent stations
- each wants to send λ frames per second
- a station may not send another frame until the first is sent
- Single Channel Assumption
 - all stations communicate over a single shared channel
- Collisions: two stations attempt to send at once
 - neither transmission succeeds
- Time
 - continuous time: frame transmissions can start anytime
 - discrete time: clock ensures all sends initiate at the start of a slot
- Carrier Sense
 - stations can tell if channel is in use before sending
 - stations must wait to know if channel was in use

7

Aloha

Stations

ground based radio stations on islands

Pure Aloha

- send data a will, collisions will happen
- on collision, wait a random amount of time & try again
- use standard, fixed size packets
- what is channel efficiency?
 - assume Snew frames per frame time
 - assume G total frames trying to be sent per frame time
 - $S = G P_0$
 - probability of k frames generated during a frame time

$$-\Pr[k] = G^k e^{-G}/ k!$$

•
$$P_0 = e^{-2G}$$
, so $S = Ge^{-2G}$

Performance of Aloha

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

copyright 1997 Jeffrey K. Hollingsworth

9

Aloha (cont.)

Sotted Aloha

- Use a central clock
- Each station only sends at the start of frame
- Reduces collision window by 1/2
 - $S = G e^{-G}$

Carrier Sense Multiple Access

- look before you leap!
 - don't send if someone else is sending
- collisions are still possible
 - propagation delay induces uncertainty into sensing
 - possible two hosts both start sending at the same time
- persistence: when to send after detecing channel in use
 - 1-persistent
 - as soon as the channel is free, starting sending
 - nonpersistent CSMA
 - if channel is sensed busy, wait a random time and try again
 - p-persistent CSMA
 - if slot is idle send with probability p, else wait for next idle slot