Announcements

- HW #2 (due 10/28/97):
 - Chapter 5: 1, 5, 6, 7, 8, 15, 16, 21, 30, 35
- Reading
 - Today: 6.1-6.2.6
 - Thursday: 6.3-6.4

Transport Layer

- Goal: provide error free end-to-end delivery of data
 - provide in-order delivery over unreliable network layer

Issues:

- checking packet integrity
- re-transmission of lost of corrupt packets
- connection establishment and management
- addresses
 - need to define a host plus process
 - typical abstraction is <host, port>
- byte vs. packet transport serive
 - byte service
 - bytes are in order, but packet boundries are lost
 - used by TCP
 - packet serivce
 - preserve packet boundries

Duplicate Packets

- Issue: packets can be lost or duplicated
 - need to detect duplicates
 - need to re-send lost packets
 - but how do we know they are not just delayed?

• Solution 1

- use a sequence number
 - each new packet uses a new sequence number
 - can detect arrival of stale packets
- problem: when node crashes, sequence number resets

Solution 2

- use a clock for the sequence number
 - clocks don't reset on reboot, so we never lose sequence #
- use a max lifetime for a packet
 - permits clocks to roll over
- can get into **forbidden** region

Three-way Handshake

- Use different sequence number spaces for each direction
- Three messages used
 - Connection Request
 - send initial sequence number from caller to callee
 - Connection Request Acknowledgment
 - send ACK of initial sequence number from caller to callee
 - send initial sequence number from callee to caller
 - First Data TPDU
 - send ACK of initial sequence number from callee to caller
- Each Side Selects an initial number
 - it knows that the number is not currently valid
 - uses time of day
- limits number of connects per unit time, but not data!

Example of Three-way Handshake

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

Closing a Connection

- To prevent data loss,
 - both sides must agree they are done
- Problem: how to agree
 - possible that "I am done" messages will get lost
 - possible that "I ACK you are done" messages will get lost

Solution:

- initiator sends Disconnect Request, start DR timer
- when initiated party receives DR, send DR and start DR timer
- when initiator gets DR back, send ACK and release connection
- when initiated gets ACK, release connection
- if initiator times out, send new DR
- if initiated times out, release connection

Connection Close Example

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall. copyright 1997 Jeffrey K. Hollingsworth

Lingering Half-Duplex Connections

- If a party (or a link) dies
 - can be left with dead connections
- Solution: use keep-alive packets
 - every n seconds, send a packet
 - if no packet is received after n * m seconds, cleanup