
1CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Announcements

l reading
– for Thursday 5.5

l Homework #1 (due 9/30/97 in class)
– ch1, p.4 simple expression and explanation is fine
– ch 2, p14: just use dvision (assume mean is extact)

l Programming Project #1 will be returned on Th.

2CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Sending More Than one Signal At Once
l Called multiplexing

– original goal of Bell was to MUX multiple telegraph signals

l Time Division Multiplexing
– everyone gets whole bandwidth
– but only when its their turn

Channel
1

Channel
2

Channel
3

Channel
4

Channel
24

193 Bit frame (125 µsec)

7 Data
bits per
channel

per sample

Bit 1 is
a framing
code

Bit 8 is for
signaling

0

1

figure copyright , 1996, Andrew S. Tanenbaum

3CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Frequency Division Multiplexing
l Frequency Division

– everyone gets to talk at once
– but only in their own frequency

300 3100

Channel 3

Channel 2

Channel 1

1

1

1

A
tte

nu
at

io
n

fa
ct

or

64

Frequency (kHz)

(c)

Channel 1 Channel 3

Channel 2

68 72

60 64

Frequency (kHz)

(b)

Frequency (Hz)

(a)

68 72

60

figure copyright , 1996, Andrew S. Tanenbaum

4CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

ATM Switching

l Requirements
– be able to switch 360,000 cells/sec per input link
– switch cells with as low a discard rate as possible
– never reorder the cells on a virtual circuit

l Issues
– multiple cells destined for the same output at once

• need to buffer one of them
• must ensure fairness is maintained

– head-of-line blocking
• possible that a blocked output is holding up cells that

could be delivered

5CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Switching Fabric (space division)

l Cross bars are great, but require O(n2) wires
l Can use a collection of smaller cross bar switches

– penalty: a request to connect may block

n

Crossbars
N
n

N
n

×
N
n

N
n

×
N
n

Crossbars
N
n Crossbars

N
nCrossbars

N
n

k
Crossbars

N Inputs N outputs

(a) (b)

N
n

×
N
n

N
n

×
N
n

N
n

×
N
n

k
Crossbars

N Inputs N outputs

N = 16, n = 4, k = 2 N = 16, n = 4, k = 3

n × k

n × k

n × k

n × k

n × k

n × k

n × k

n × k

k × n

k × n

k × n

k × n

k × n

k × n

k × n

k × n

6CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Batcher-banyan Switching
l Banyan

– can do a “good” or “poor” job of switching due to collisions
– if the inputs are sorted, we get performance

l Batcher
– sorts traffic base on full address of destination
– compares two colliding packets and uses final destination to select

output port
– requires O(nlog2n) nodes (2x2 switching elements)

Batcher switch Banyan switch

6
5

1
4

1

5
4

6

6

5
4

1

6

5

4

1

5 5 4 1

4 1 4
6

4

1

6

1

5 5

6 6

001

100

101

110

001

100

110

001

101

100

110

7CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Introduction to Pthreads

l Often want multiple “threads of control”
– separate logical acctivity (processing different requests)
– can exploit multiple processors if they are available

l Threads
– multiple execution streams that share an address space

• premptive: each thread gets a timeslice
• non-premptive: threads only switch on a block or a yield

– similar to processes

l Need to share information
– different threads are working on the same problem
– goal: let them share all of their global and heap variables
– problem: coordinating access

8CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Producer-consumer: shared memory

l Consider the following code for a producer
repeat

….
produce an item into nextp
…
while counter == n;
buffer[in] = nextp;
in = (in+) % n;
counter++;

until false;

l Now consider the consumer
repeat

while counter == 0;
nextc = buffer[out];
out = (out + 1) % n;
counter--;
consume the item in nextc

until false;

l Does it work? Answer: NO!

9CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Problems with the Producer-Consumer
Shared Memory Solution

l Consider the three address code for the counter
Counter Increment Counter Decrement
reg1 = counter reg2 = counter
reg1 = reg1 + 1 reg2 = reg2 - 1
counter = reg1 counter = reg2

l Now consider an ordering of these instructions
T0 producer reg1 = counter { reg1 = 5 }
T1 producer reg1 = reg1 + 1 { reg1 = 6 }
T2 consumer reg2 = counter { reg2 = 5 }
T3 consumer reg2 = reg2 - 1 { reg2 = 4 }
T4 producer counter = reg1 { counter = 6 }
T5 consumer counter = reg2 { counter = 4 }

This
should
be 5!

10CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Defintion of terms

l Race Condition
– Where the order of execution of instructions influences the

result produced
– Important cases for race detection are shared objects

• counters: in the last example
• queues: in your project

l Mutual exclusion
– only one process at a time can be updating shared objects

l Critical section
– region of code that updates or uses shared data

• to provide a consistent view of objects need to make
sure an update is not in progress when reading the data

– need to provide mutual exclusion for a critical section

11CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Critical Section Problem

l processes must
– request permission to enter the region
– notify when leaving the region

l protocol needs to
– provide mutual exclusion

• only one process at a time in the critical section
– ensure progress

• no process outside a critical section may block another
process

– guarantee bounded waiting time
• limited number of times other processes can enter the

critical section while another process is waiting
– not depend on number or speed of CPUs

• or other hardware resources

12CMSC 417 - S97 (lect 6) copyright 1997 Jeffrey K. Hollingsworth

Using Locks for the Critical Section

l Lock:
– if no thread has the lock mark it locked and return
– if another thread has the lock, wait

l Unlock:
– release the lock
– if other threads waiting, notify one or all of them

l Called mutexs in pthreads
– pthread_mutex is the data type
– pthread_mutex_init used to initialize it
– pthread_mutex_lock locks it
– pthread_mutex_unlock releases it

l Lock Grainularity
– want to lock enough to protect accesses
– don’t want to lock too much to slow down the program

