Announcements

- project #1 is due on Wed. at 6:00 PM
 - submit a tar file with
 - source
 - typescript file
 - use submit program from ~jh01/bin/submit

ATM

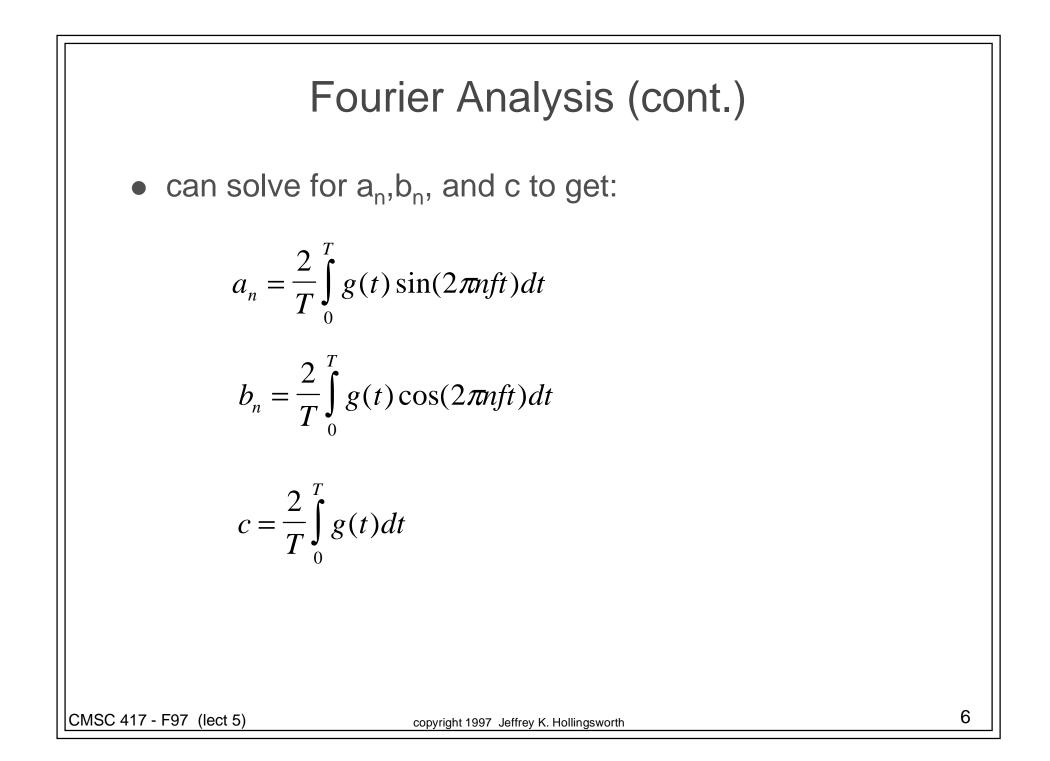
- Asynchronous Transfer Mode
 - not tied to a single central clock
 - proposed by telco's to replace their network
- Fixed size packets called cells (53 bytes)
 - 5 bytes for header (not big enough for end-to-end id)
 - use hop by hop Virtual Circuit Ids (VCI)
 - 48 bytes for data
 - telcos wanted 32, packet switching wanted 64
- Physical Media
 - copper at T-3 speeds (45 Mbps)
 - fiber at OC-3 to OC-48 (155 Mbps and up)
- Designed to carry
 - constant rate applications: voice and video
 - variable rate applications: email, www, etc.

ATM Reference Model

OSI Layer	ATM Layer	Function
3 and 4	AAL	Segmentation
		Reassembly
2 and 3	ATM	Flow control
		Cell header
		Virtual circuit
		Cell mux/demux
1 and 2	Physical	Header sums
		Frame generation

CMSC 417 - F97 (lect 5)

Sending Information


- data is sent by varying a value over time
 - can model this as a single valued function f(t)
 - the physical property that is changed could be
 - current
 - voltage
- goal is to analyze the properties of this function
 - how much energy is required?'
 - how does the physical media affect the signal

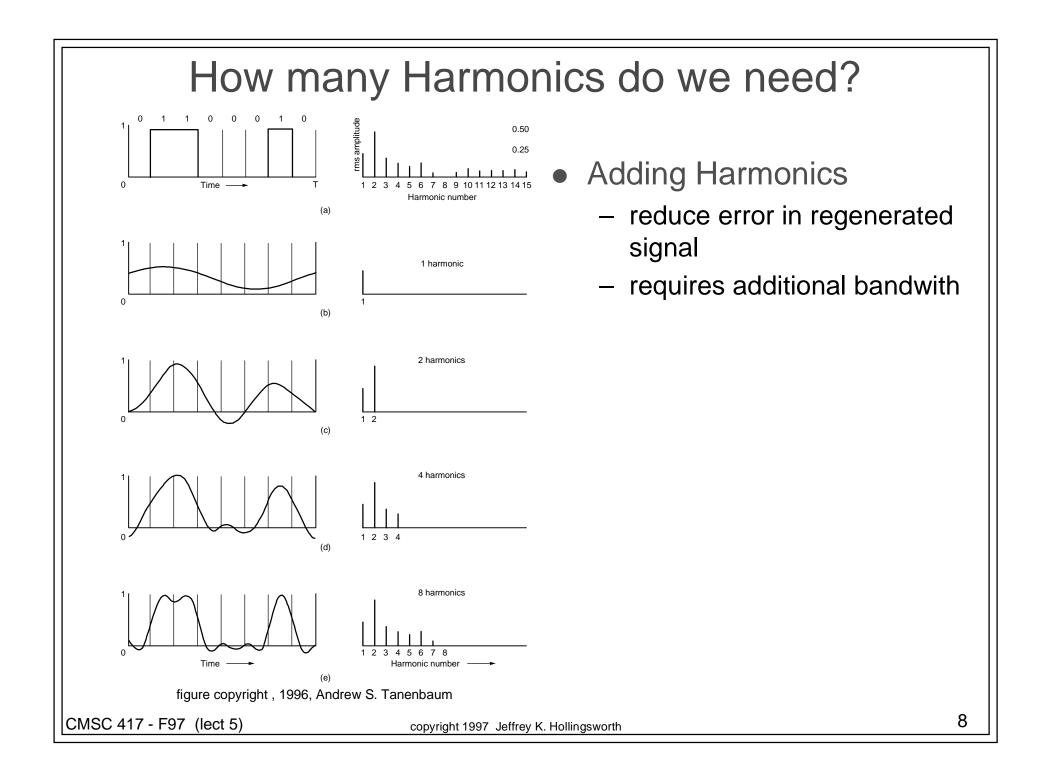
Fourier Analysis

- Any periodic function g(t) can be represented by
 - a constant term
 - a series (possibly infinite) of sines and cosines
 - a signal has a fundamental frequency f=1/T
 - each term is called a harmonic

$$G(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

- finite functions can be repeated forever
 - effectively any signal is finite so it has a Fourier transform

Bandwidth Limits


• Consider sending 01100010 (ascii b):

$$a_{n} = \frac{1}{\pi n} [\cos(\pi n/4) - \cos(3\pi n/4) + \cos(6\pi n/4) - \cos(7\pi n/4)]$$

$$b_{n} = \frac{1}{\pi n} [\sin(3\pi n/4) - \sin(\pi n/4) + \sin(7\pi n/4) - \sin(6\pi n/4)]$$

$$c = \frac{3}{8}$$

- how much power is required to send the signal ? - height of a_n and b_n dictate power requirements
 - (rms) $\sqrt{a^2 + b^2}$ indicates the power required

Importance of Harmonics

- Bandwidth limits
 - physical circuits often only pass up to a cutoff frequency
 - sometimes limit bandwidth (it costs money)
- Non-Uniform Attenuation
 - not all frequencies pass equally well
 - 60 Hz is a bad frequency due to electrical circuits
 - try to ensure that the "important" parts get through
 - this is called distortion
 - exactly like bad sound when you turn up the stereo amp

Why baud may not equal bits/sec

- baud is number of changes per second
 - if the signal has 0/1 volts then bits/baud ==1
 - but if 0,1,2,3,4,5,6, and 7 volts used then 3 bits/baud
- limit on baud per second over a phone line
 - phone lines are limited to about 3khz
 - so only harmonics less than 3,000 Hz will get sent
 - for 9600Bps the first harmonic is at 1,200
 - only two harmonics will be sent

Max Data Rates Over A Channel

- Shannon/Nyquist limit
 - max data rate is 2Hlog₂V bits/sec
 - H bandwith of the channel
 - V number of levels used to encode data
 - for example, a noiseless 3khz channel can carry
 - 6,000 bps for binary traffic but
 - 12,000 bps for quadary (4 level) traffic
- What about noise?
 - noise is measured as the ratio of signal to noise power
 - normally measured in db or 10 $\log_{10}(S/N)$
 - Shannon limit:
 - max bits/sec = $H \log_2(1+S/N)$
 - 3khz, 30dB channel limited to 30,000 bps

Transmission Media

- Magnetic Media
 - tapes hold 40GB today
 - a van can carry 2,000 tapes (or 80 TB)
 - want to move data from DC to Baltimore
 - 80 TB/hour = 166 Gb/sec
 - what about latency?
 - get all 80TB at once
 - need to read/write all of these tapes
- Twisted Pair
 - copper wires (1.5 Mbps long hall)
 - 100Mbps with two pairs for short distances