
Announcements

- Reading
 - -7.1-7.2
- Midterm #2 re-grade were returned
- Homework #2
 - Ch4: 21, 22
 - Ch 7: 4, 13, 14

• Homework is worth 4% of your grade (2% each)

Authentication using Public Keys

Assume each party knows the other's public key
 <sub>E_b(A, R_a)
</sub>

- How To learn others Public Key?
 - use a public key server
 - but how do we trust the public key server?
 - have a public key for the public key server
 - possible to have man-in-the-middle attacks
 - interlock protocol
 - only send half the message (odd bits) at a time
 - prevents man-in-the-middle attacks
 - still possible to spoof service

Digital Signatures

- Want to "sign" a message such that:
 - receiver can verify the identity of the sender
 - sender cannot repudiate the contents of the message
 - receiver cannot forge a message
- Central authority (BB)
 - A sends BB A, $K_a(B, R_a, t, P)$
 - BB sends B $K_b(A, R_a, t, P, K_{bb}(A, t, P))$
 - everyone trusts BB
 - BB can be called on to decrypt messages to verify them
 - BB need not store all message that it validates
 - t timestamp used to prevent replay attacks
- Public Key
 - need E(D(P)) = P and D(E(P)) = P
 - A sends B $E_b(D_a(P))$
 - B keeps D_a(P) and third party can use E_a to verify it's from A

Used to prevent replay attacks when t has not changed yet (I.e. slow clock)

Digital Signatures (cont.)

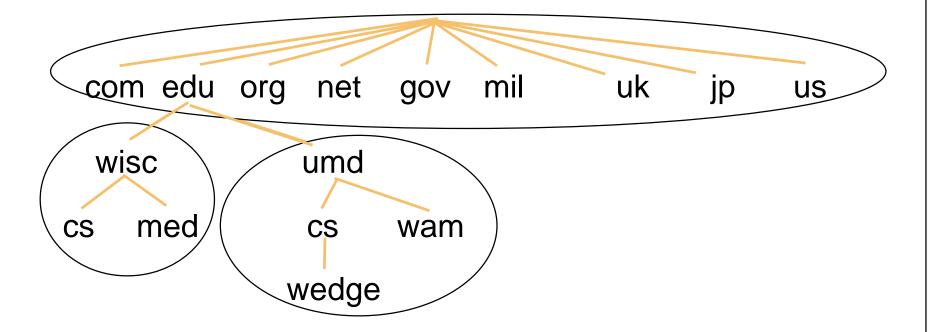
Problems

- Repudiation
 - inform police that the key was stolen
 - claim the "bad guy" sent the message
- Key Changes
 - need to keep records of when keys were in use

Standards

- RSA Algorithm
 - popular with many commercial systems
- El Gamal
 - NSA/NIST Standard
 - too new, and private to have trust

Message Digests


- Goal: Send Signed Plain text
 - can use slow cryptography on signature since its short
- Need:
 - Given P, easy to compute MD(P)
 - Given MD(P), impossible to find P
 - no P and P' exist such that MD(P) = MD(P')
 - use hash functions that produce >= 128 bit digest
- Operation
 - A sends P, $D_a(MD(P))$
- Digest Functions
 - MD5
 - produces 128 bit digest
 - SHS
 - NSA/NIST effort
 - produces 160 bit output

Naming Hosts In the Internet

- Originally used a single file
 - all hosts had line line with name and IP Address
- Domain Naming System (DNS)
 - introduced in 1986
 - tree based structure to names
 - Names
 - full name must be less than 256 characters
 - each part can be up to 64 characters
 - are case insensitive
 - administration of subtrees can be deligated
 - each administrative region is called a zone

Examples of Domain Names

- Domains can be both roots of subtrees and hosts
 - For example: cs.umd.edu
- Top level country codes
 - required by PTTs outside of US

