Announcements

- Reading
 - Chapter 4 (4.3.1, 4.4, 4.5)
- Homework #1
 - Due today
- Midterm #2
 - 11/8/01 in class
- No office hours next week

CMSC 417 – F01 (lec 19)

Carrier Sense Multiple Access

- look before you leap!
 - don't send if someone else is sending
- collisions are still possible
 - propagation delay induces uncertainty into sensing
 - possible two hosts both start sending at the same time
- persistence: when to send after detecing channel in use
 - 1-persistent
 - as soon as the channel is free, starting sending
 - nonpersistent CSMA
 - if channel is sensed busy, wait a random time and try again
 - p-persistent CSMA
 - if slot is idle send with probability p, else wait for next idle slot

Collision Detection

• If a sender senses a collision

- stop sending at once
- apply random backoff

• "contention" period

- after contention period, there will be no collision
- send for for 2τ (max propagation delay)
 - need 2τ since might be a collision at far end at τ - ϵ

Ethernet Cable Options

- 10base5: Thicknet first Ethernet
 - Thick cable, doesn't bend well
 - vampire taps used to "tap" the network
 - max run is 500 meters
- 10Base2: Thin coax (cheaper net),
 - uses "T" connectors
 - max run is 200 meters
- 10baseT: twisted pair
 - uses a central hub
 - easier to find faults and problems
 - max run is 100 meters to hub

Manchester Encoding

- Problem: How to send zero/ones?
 - need to know timing information
 - when does on bit end?
- Answer: Force many transitions
 - every bit is half low and half high
 - 1 is high then low
 - 0 is low then high
 - but this doubles bandwidth
- Differential Manchester Encoding
 - better noise immunity
 - 0 is a transition at the start, 1 none
 - both transition during the middle

Collision Management

• Binary Exponential Backoff

- after collision, divide into slot times
- after first collision, wait either 0 or 1 slot times
- after second collision, wait either 0, 1, 2, or 3 slot times
- limited to 1023 slots
- after 16 collisions, link layer gives up
- Performance
 - each station wants to transmit with probability p, then
 - $A = k [p^{1}(1-p)^{k-1}]$
 - A --> 1/*e* as k --> infinity
 - probability a contention interval has j slots is A(1-A)^{j-1}
 - mean number of slots per contention is:

$$\sum_{j=0}^{\infty} jA(1-A)^{j-1} = \frac{1}{A}$$
 mean contention interval is then $2\tau/A$

CMSC 417 – F01 (lec 19)

CMSC 417 – F01 (lec 19)

Variations on Ethernet

- Traditional Ethernet is a bus
 - limited to one host at a time
 - Requires long wires
- Hub based Ethernet
 - Cables form a star
 - Basic bus is still used (one large collision domain)

Bridges

- Split one logical LAN into multiple physical LANs
 - permit mixing types of 802.X networks
 - 100 Megabit Ethernet with 10Mbps
 - token ring with Ethernet
 - extend the physical network
 - limits on cable length
 - improve security
 - reduce traffic
- Forward traffic between the physical layers
 - regenerate the signal
 - convert between 802.X formats
 - this is non-trivial

Learning Bridges

• Transparent to users

- traffic just gets to the correct location
- no software configuration required
- Selectively forward traffic among segments
 - used 48bit Ethernet addresses
 - at first, forward all traffic via flooding
 - use **source** address to learn where a host is located
 - do not forward a packet if the destination is known to be on the local network
- need to have a spanning tree to prevent loops
 - use lowest serial number to elect root
 - compute shortest path to root as the spanning tree
 - some bridge may be disabled to ensure a tree

Switched Ethernet

- Make Bridge with multiple ports
 - different ports can each form there own Ethernet segment
 - frames for other segment travel over backplane
 - individual stations retain the same card and cabling

Source Routing Bridge (skipped Fall 2001)

- Each host knows how to reach other hosts
 - it builds a full path to that host
- Every LAN and bridge has a number
 - a LAN has a 12 bit identifier
 - a bridge a 4 bit id
- To discover a route
 - broadcast a discovery packet
 - destination responds
 - bridges fill in their information in the response
 - results in a full path to the remote destination

Source vs. Transparent Bridges (skipped Fall 2001)

• Source Bridges

- always use optimal routes
- could exploit multiple paths between two LANs for load sharing
- Transparent Bridges
 - require no changes to nodes
 - nodes are now more complex
 - no need to configure the bridges
 - source bridges need LAN and Bridge Ids

Faster Ethernet

Based on hubs

- advantages of hubs rendered bus cables useless
- limits cable length to 100 meters for copper
- can be switched or use a single collision domain

• 100 Mbps

- 100Base-T4
 - uses 4 pair cat 3 wiring
 - 33Mbps in each direction and two reversible channels
 - 25Mhz with trinary signaling and 4 bits per baud

- 100Base-TX

- two pairs of cat 5 wiring
- 125Mhz with 4bits our of 5 for data

• 1000 Mbps

- Uses 4 pair of cat 5e wiring (at 250Mhz)
- Uses fiber