Announcements

• Reading

- Chapter 4 (4.1-4.2)

• Project #4 is on the web

Note policy about project #3 missing components

• Homework #1

- Due 11/6/01
 - Chapter 6: 4, 12, 24, 37

• Midterm #2

- 11/8/01 in class

Transmission: Satellites

- Different Orbits Possible
 - orbit affects many communication properties
- Geosynchronous
 - always over the same spot on the earth
 - 36,000 Km orbit is required
 - only 180 slots possible
 - uses one uplink and one down link frequency
 - large round-trip latencies
- LEO (Low Earth Orbit)
 - each satellite keeps moving into and out of range
 - solution: use a large number of satellites
 - sort of like cells, but the cells are the ones moving
 - lower round-trip latency

Sending More Than one Signal At Once

- Called multiplexing
 - original goal of Bell was to MUX multiple telegraph signals
- Time Division Multiplexing
 - everyone gets whole bandwidth
 - but only when its their turn

4

Frequency Division Multiplexing

• Frequency Division

- everyone gets to talk at once
- but only in their own frequency

ATM Switching

• Requirements

- be able to switch 360,000 cells/sec per input link
- switch cells with as low a discard rate as possible
- never reorder the cells on a virtual circuit
- Issues
 - multiple cells destined for the same output at once
 - need to buffer one of them
 - must ensure fairness is maintained
 - head-of-line blocking
 - possible that a blocked output is holding up cells that could be delivered

Switching Fabric (space division)

- Cross bars are great, but require O(n²) wires
- Can use a collection of smaller cross bar switches
 - penalty: a request to connect may block

CMSC 417 - F01 (lec 18)

copyright 2001 Jeffrey K. Hollingsworth

7

Batcher-banyan Switching

Banyan

- can do a "good" or "poor" job of switching due to collisions
- if the inputs are sorted, we get performance
- Batcher
 - sorts traffic base on full address of destination
 - compares two colliding packets and uses final destination to select output port
 - requires O(nlog²n) nodes (2x2 switching elements)

Title: (Adobe Illustrator (R) Version 5.0 Level 2 Emulation) Creator: Adobe Illustrator(TM) 5.0 CreationDate: (04/10/93) ()

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

CMSC 417 – F01 (lec 18)

copyright 2001 Jeffrey K. Hollingsworth

Medium Access Layer

Broadcast Networks

- share a common resource for communication
 - bus, wire, air, etc.
- need to coordination access to this resource

• Limits of Static Channel Allocation

- suitable for constant rate traffic of similar speeds
- however, bursty traffic results in poor channel utilization
- consider one queue vs. separate queues for each person
 - n queues with bursty arrival have mean delay n times
 1 queue
- Dynamic Allocation
 - only use channel when have something to send
 - need to control access to the channel

Shared Channel Model

• Station model

- N independent stations
- each wants to send λ frames per second
- a station may not send another frame until the first is sent
- Single Channel Assumption
 - all stations communicate over a single shared channel
- Collisions: two stations attempt to send at once
 - neither transmission succeeds
- Time
 - continuous time: frame transmissions can start anytime
 - discrete time: clock ensures all sends initiate at the start of a slot
- Carrier Sense
 - stations can tell if channel is in use before sending
 - stations must wait to know if channel was in use

CMSC 417 - F01 (lec 18)

Aloha

• Stations

- ground based radio stations on islands

• Pure Aloha

- If send data at will, collisions will happen
- on collision, wait a random amount of time & try again
- use standard, fixed size packets
- what is channel efficiency (assuming Poisson distribution)?
 - S new frames per frame time
 - assume G total frames trying to be sent per frame time
 - P_0 = probability of exactly one sender sending
 - $S = G P_0$
 - probability of k frames generated during a frame time
 Pr[k] = G^k e^{-G}/ k!

•
$$P_o = e^{-G} e^{-G} = e^{-2G}$$
, so $S = G e^{-2G}$

Aloha (cont.)

• Slotted Aloha

- Use a central clock
- Each station only sends at the start of frame
- Reduces collision window by 1/2
 - $S = G e^{-G}$