
1CMSC 417 – F01 (lec15) copyright 2001 Jeffrey K. Hollingsworth

Announcements

l Reading
– Chapter 6 (6.4 & 6.6)

l Midterm #1
– Re-grades were returned

• Changes ranged from –7 to +10

2CMSC 417 – F01 (lec15) copyright 2001 Jeffrey K. Hollingsworth

Multiplexing in the Transport Layer
l Upward multiplexing

– putting multiple transport connections onto one network connection
– used to accommodate pricing strategies that charge for connections

l Downward multiplexing
– using several network connections per transport connection
– permits use of multiple copies of network resources

• if the network layer uses sliding windows
– a high latency network may under utilize the link
– multiple connections each get a window

• per connection buffer allocation
– get more buffers

• round-robin scheduling
– get a larger share of link bandwidth

3CMSC 417 – F01 (lec15) copyright 2001 Jeffrey K. Hollingsworth

Crash Recovery

l Router or Link Crashes
– Data in transit can be lost.
– End nodes have sufficient state to recover lost data.
– Transport protocol can hide network failures from the application.

l Host Crashes
– Transport level state will be lost at one end.
– Does the transport layer have sufficient info to recover?, No!.

• Information must flow down to network and up to transport user
– ACKs go down, and data goes up.
– It is not possible to make these two operations atomic.

• lack of stable storage causes this problem
– Result, higher up layer must deal with host crashes

4CMSC 417 – F01 (lec15) copyright 2001 Jeffrey K. Hollingsworth

Protocol State Machines

Established

Receiving

Queued

Sending

Waiting

Disconnecting

Idle
<Connect, ~P1> , A3

<call_req, ~P3>, A4

<timeout, *>

<DISCON, P4>, A5 <LISTEN, P2>, A1

<Clear_req, *>, A10

<SEND, ~P5>, A8

<Call_acc, *>

<Clear_req, *>

<clear_Req, *>

<DISCON, ~P4>, A6

<Clear_req, *>, A10

<Recv, *>, A9

<LISTEN, *>

<Credit, *>, A7 <data, *>, A12

<clear_Conf, *>

<LISTEN, ~P2>, A2

<LISTEN, P1>
<CONNECT, P1>

<SEND, P5>, A7
<Clear_req, *>, A10
<Credit, *>, A11

<call_req, P3>, A1

5CMSC 417 – F01 (lec15) copyright 2001 Jeffrey K. Hollingsworth

Predicates And State Transitions

Act Meaning

A1 Send Call_acc

A2 Wait for Call_req

A3 Send Call_req

A4 Start Timer

A5 Send Clear_conf

A6 Send Clear_req

A7 Send message

A8 Wait for credit

A9 Send Credit

A10 Set Clr_req_recv flag

A11 Record credit

A12 Accept message

Pred Meaning

P1 Connection table full

P2 Call_req pending

P3 LISTEN Pending

P4 Clear_req Pending

P5 Credit Available

6CMSC 417 – F01 (lec15) copyright 2001 Jeffrey K. Hollingsworth

TCP Timer Management

l Problem: How to pick timeout value?
– need to estimate round-trip latency
– need low variance in round trip latency

l Solution: dynamic estimates of RTT
– RTT = α RTT + (1 - α) Μ

M time of an ACK

α = 7/8

– Need to pick retransmission time
• old policy, use Timeout = RTT β , with β = 2
• estimate standard deviation of RTT using mean deviation

D = α D + (1 - α) | RTT - M |
Timeout = RTT + 4 * D

– How to update RTT on retransmission's

• double Timeout on a retransmission

7CMSC 417 – F01 (lec15) copyright 2001 Jeffrey K. Hollingsworth

Other TCP Timers

l Persistence Timer
– Prevents deadlock due to dropped window packets

• This is a problem if the window is set to 0

l Keepalive Timer
– Prevents half dead connections
– may consume bandwidth
– may kill live connections when net hiccups

l TIMED Wait
– prevents re-use of a connection before max packet life is

over
– set to twice max packet lifetime

