Announcements

- Reading
 - Today: Chapter 5 (5.3-5.4)
- Project #2
 - Due on Monday Sept 26th (10 AM)

copyright 2001 Jeffrey K. Hollingsworth

Shortest Path Routing

Graph Representation

- nodes are routers
- arcs are links
- to get between two routes, select a the shortest path
- need to decide metric to use for minimization

Dijkstra's Algorithm

select source as current node while current node is not destination foreach neighbor of current if route via current is better update its tentative route label node with <distance, current Node> find tentative node with shortest route mark a permanent make it current

Flood Routing

- Every Incoming packet is resent on every outbound link
- generates many duplicate packets
- potentially infinite packets unless they are damped
 - multiple paths to the same destination result in loops
 - can use a lifetime (max hops) to damp traffic
 - can also keep track in routers if the packet has been seen
- good metric to compare algorithms
 - flooding always chooses the shortest path
 - must ignore overhead and congestion due to flooding

Flow-Based Routing

Compute optimal routes off-line if we know in advance:

- link capacity
- topology
- traffic for foreach <src,dest> pair
- Testing a routing table:
 - given a tentative routing table
 - for each link we can compute mean delay

$$T = \frac{1}{\mathbf{m}C - \mathbf{l}}$$

- C is link capacity bps, 1/ $\!\mu$ is mean packet size, λ is actual traffic in packets/sec
- then compute overall utilization (as mean or max of delays)
- possible to exhaustively try all routing tables this way

CMSC 417 – F01 (lect7)

Distance Vector Routing

- Also known as Bellman-Ford or Ford-Fulkerson
 - original ARPANET routing algorithm
 - early versions of IPX and DECnet used it too
- Each router keeps a table of tuples about all other routers
 - outbound link to use to that router
 - metric (hops, etc.) to that router
 - routers also must know "distance" to each neighbor
- Every T sec., each router sends it table to its neighbors
 - each router then updates its table based on the new info
- Problems:
 - fast response to good news
 - slow response to bad news
 - takes max hops rounds to learn of a downed host
 - known as count-to-infinity problem

CMSC 417 - F01 (lect7)

Link State Routing

- Used on the ARPANET after 1979
- Each Router:
 - computes metric to neighbors and sends to every other router
 - each router computes the shortest path based on received data
- Needs to estimate time to neighbor
 - best approach is send an ECHO packet and time response
- Distributing Info to other routers
 - each router may have a different view of the topology
 - simple idea: use flooding
 - refinements
 - use age sequence number to damp old packets
 - use acks to permit reliable delivery of routing info

Hierarchical Routing

- Routing grows more complex with more routers
 - takes more space to store routing tables
 - requires more time to compute routes
 - uses more link bandwidth to update routes
- Solution:
 - divide the world into several hierarchies
 - Do I really care that router z at foo U just went down?
 - only store info about
 - your local area
 - how to get to higher up routers
 - optimal number of levels for an N router network is In N
 - requires a total of e In N entries per router

Routing for Mobility

- Or What happens when computers move?
- Two types of mobility:
 - migratory: on the net in many locations but not while in motion
 - roaming: on the net while in motion
- Basic idea:
 - everyone has a home
 - you spend much of your time near home
 - when not at home, they know where to find you
 - home agents: know where you are (or that you are missing)
 - foreign agents: inform home agents of your location
 - informs users that future communication should be sent via them (this is a huge potential security hole)

Broadcast Routing

- Sometimes information needs to go to everyone
 - routing updates in link-state
 - stock data, weather data, etc.
- sender iterates over all destinations
 - wastes bandwidth
 - sender must know who is interested
- flooding
 - see routing updates for issues
- multi-destination routing
 - routers support having multiple destinations
 - routers copy output packets to correct link(s)
- spanning tree
 - contains subset of graph with no loops
 - efficient use of bandwidth
 - requires info to be present in routers (but it is for link state)

Routing Broadcast Traffic (cont.)

- Reverse path forwarding
 - check link a packet arrives on
 - if the inbound link is the one the router would use to the source, then
 - forward it out all other links
 - else
 - discard the packet
 - requires no special data sorted in each router

