
1CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Announcements

l Reading
– Today: Chapter 5 (5.1-5.2)

l Project #2
– Due on Monday Sept 24th (10 AM)
– Pthreads book in on reserve on Engineering Library
– In makefile, need to use –lpthread when linking

2CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Condition Variables
l Allow threads to wait on the value of a variable

– wait until the list is non-empty for example
– allows one thread to signal to another thread that something has changed

• threads may sleep waiting to be notified of this change

l Can unlock and re-lock a mutex before/after suspend

wait for count to be >= 1

pthread_mutex_lock(&count_mutex);

while (count <= 0) {

pthread_cond_wait(&count_condvar, &count_mutex);

}

pthread_unlcok(&count_mutex);

update count:

pthread_mutex_lock(&count_mutex);

count++;

pthread_mutex_unlock(&count_mutex);

pthread_cond_signal(&count_condvar);

3CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Consider the following program

T1:
count++ -- in C one statement, but really multiple instructions

load r1, count
add r1, 1, r1
store r1, count

T2:
count++ -- in C one statement, but really multiple instructions

load r2, count
add r2, 1, r2
store r2, count

What happens when T1 is preempted right after the load

4CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

With Synchronization

T1:
pthread_mutex_lock(&mylock)
count++
pthread_mutex_unlock(&mylock)

T2:
pthread_mutex_lock(&mylock)
count++
pthread_mutex_unlock(&mylock)

Only one thread at a time gets to update the count

5CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Queue Project

l Need to coordinate access to shared resources
– use mutex to guard access to a shared data structure

l Queue abstraction is very useful
– enqueue: add item to queue
– dequeue: remove item, block if not ready
– head: return head of queue without dequeue
– probe: test if the queue is empty

– must use a mutex to protect access to queue
– build a producer/consumer test program

l Multiple application threads
– our test application is multi-threaded
– must be able to support multiple threads trying to en-queue

6CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Network Layer

l Responsibility
– end-to-end delivery of packets to the network
– selecting routes for the packets to take

• implies knowledge of the network topology
– managing utilization of the links

• provide flow control (across multiple links)
• spread load among different routes

l Interface Design
– should be independent of subnet technology
– hide number, type, and topology of network from upper

layers
– export a common number plan for entire network

7CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Connection vs. Connectionless

l Two possible designs for network layer
– connection oriented service (ATM)

• based on experience of telcos
– connectionless service (IP)

• based on packet switching (ARPANET)

l Connectionless
– transport datagrams from source to destination

• end-point addresses in every datagram
– less complex network layer, more complex transport

l Connection oriented
– also called virtual circuits
– establish an end-to-end connection with network state

• can use VCI (global or next hop) in each packet

8CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Datagram vs. VC Addresses

l Datagrams
– must include full address in each packet
– addresses must be unqiue for entire network

• don’t re-use too often
• addresses per src/dest pair

l Virtual Circuit
– globally unique

• requires allocation scheme to ensure its unique
• consumes many bits per packet

– per link
• requires translation at each switch
• uses fewer bits (important for small packets like ATM)

9CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Link Failue in Virtual Circuits

l Re-establish virtual circuit
– router near failure can patch up link
– original host/router creates new virtual circuit

l Virtual circuit is dropped
– transport layer can handle recovery

10CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Virtual Circuit vs. Datagram

Issue Datagram Virtual Circuit
Circuit setup not needed necessary

Addresses full source/dest per packet next hop vc sufficient

state no state in network per connection data at
each router

routing each packet individually once at VC setup

router/link failure a few packets may be lost all VCs through router are
terminated

congestion control difficult many pre-allocation and
policing policies permitted

11CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Routing: Goals
l Correctness

– packets get where they are supposed

l Simplicity
– easy to implement correctly

– possible to make routing choices fast (or updates easy)

l Robustness
– failures in the network still permit communication

l Stability
– small changes in link availability results in a small change in the routing

information

l Fairness
– each host, VC, or datagram has the same chance

l Optimality
– best possible route

– best utilization of bandwidth

12CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Do Routes Change During Network
Operation?

l nonadaptive routing (static routing)
– information loaded a boot time
– never changes during network operation

l adaptive routing
– changes in network operation alter routes
– issue: where to get this data to make choices

• locally from neighbors
• globally from all routers (or a NIC - network information

center)
– issue: when to change routes

• only on topology changes (links or routers change)
• in response to changes in load

– issue: metric to optimize
• distance, number of hops, estimated latency

13CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Optimality Principal

l If J is on the optimal route from I to K
– then the optimal route from I to K shares the optimal route

from J to K

l transitive result of this is a sink tree
– can construct a tree from all nodes to a specific node

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

B

A

F

D E
C

J

N

O

I
H

G

L

M

K

(a)

B

A

F

D E
C

J

N

O

I
H

G

L

M

K

(b)

14CMSC 417 – F01 (lect6) copyright 2001 Jeffrey K. Hollingsworth

Shortest Path Routing

l Graph Representation
– nodes are routers
– arcs are links
– to get between two routes, select a the shortest path
– need to decide metric to use for minimization

l Dijkstra’s Algorithm
select source as current node
while current node is not destination

foreach neighbor of current
if route via current is better update its tentative route
label node with <distance, current Node>

find tentative node with shortest route
mark a permanent
make it current

