
1CMSC 417 – F01 (lect 5) copyright 2001 Jeffrey K. Hollingsworth

Announcements

l Enrollment
– No one is left on the wait list

l Reading
– Today: Chapter 5 (5.1-5.2)

l Project #2
– Handout is on the web
– Due on Wed Sept 26th (10 AM)
– Reminder, not credit for late work

2CMSC 417 – F01 (lect 5) copyright 2001 Jeffrey K. Hollingsworth

ATM Datalink Protocol

l Cells (53 bytes)
– 5 byte header (4 bytes address plus 1 byte crc)

– 48 byte payload

l Header
– use CRC over the 32 bits of the header

l How to find cell boundary?
– use shift register to check for valid checksum

• 1/256 chance of a random match
– use HUNT mode to increase chances

• after a good cell, skip to the next cell boundary

• must receive δ cells with checksum matches

l Detecting loss of synchronization
– one bad cell is probably an error

– many bad cells is likely a slip (loss of sync)

– if α bad cells are seen in a row, switch to hunt mode

3CMSC 417 – F01 (lect 5) copyright 2001 Jeffrey K. Hollingsworth

Simple Link Protocols
l Stop-and-wait

– Sender
while (1) {

get frame from network layer;
send frame;
wait for ack;

}
– Receiver:

while (1) {
recv frame;
send frame to network layer;
send ack;

}

– Only one side active (sending) at once
– Ensures rate matching

4CMSC 417 – F01 (lect 5) copyright 2001 Jeffrey K. Hollingsworth

Sliding Window Protocol

l Need to
– have multiple outstanding packets
– limit total number of outstanding packets
– permit re-transmissions to occur

l Sliding Window
– permit at most N outstanding packets
– when packet is ACK’d advance window to first non-ACK’d pkt

l Retransmission
– Go-back N

• when a packet is lost, restart from that packet
• provides in-order delivery, but wastes bandwidth

– Selective Retransmission
• use timeout to re-sent lost packet
• use NACK as a hint that something was lost

5CMSC 417 – F01 (lect 5) copyright 2001 Jeffrey K. Hollingsworth

Sliding Window Example
Go-back N vs. Selective Retransmission

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

0 1

0 1 2 3 4 5 6 7 8E D D D D D D

2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10

Timeout interval

Error Frames discarded by data link layer
A

ck
 0

A
ck

 1

Ack
 2

Ack
 3

Ack
 4

Ack
 5

Ack
 6

Ack
 7

0 1

0 1 2 9 10 11 12E 3 4 5 6 7 8

2 3 4 5 6 7 8 2 9 10 11 12 13 14

Timeout interval

Error Buffered by data link layer Packets 2-8 passed
to network layer

Ack
 0

Ack
 1

Ack
 1

Ack
 1

Ack
 1

Ack
 1

Ack
 1

Ack
 1

Ack
 8

Ack
 9

Ack
 10

Time

(a)

(b)

6CMSC 417 – F01 (lect 5) copyright 2001 Jeffrey K. Hollingsworth

Pthreads

l Allows multiple threads of control on a process
l Basic operations:

– pthread_create(&threadId, attr, func, arg)
• creates a new thread
• threadid is the id of the new thread
• attr are special attributes of the thread (pass NULL)
• Func is a pointer to a function to run
• arg is an argument to that function

– first thread of control must not exit (will kill other threads)
• pthread_join(threadid, status)

– wait for a specific thread to terminate

7CMSC 417 – F01 (lect 5) copyright 2001 Jeffrey K. Hollingsworth

Using Locks for the Critical Section

l Lock:
– if no thread has the lock mark it locked and return
– if another thread has the lock, wait

l Unlock:
– release the lock
– if other threads waiting, notify one or all of them

l Called mutexs in pthreads
– pthread_mutex is the data type
– pthread_mutex_init used to initialize it
– pthread_mutex_lock locks it
– pthread_mutex_unlock releases it

l Lock Grainularity
– want to lock enough to protect accesses
– don’t want to lock too much to slow down the program

