
1CMSC 417 – F01 (lect 3) copyright 2001 Jeffrey K. Hollingsworth

Announcements

l Enrollment
– Now 11 on the waitlist
– Will not be expanding class

l Reading
– Chapter 3 (3.1-3.3)

2CMSC 417 – F01 (lect 3) copyright 2001 Jeffrey K. Hollingsworth

l Ports
– End-points for communication
– How to identify a processes rather than a machine

Project #1 Notes

Debugging
learn to use the debugger (ladebug)
check that what you send it what you think you send

print data just before it is sent

Port: 25

Port: 80

Port: 666

Port: 1234

<[srcIp,srcPort], [destIp, destPort]>

3CMSC 417 – F01 (lect 3) copyright 2001 Jeffrey K. Hollingsworth

High-speed Networking Testbeds

l The Internet was taking, now what is next?
l A series of small projects to test new ideas

– a “government gigabit” (622 Mbps)

l Issues:
– the speed of light is fixed

• round-trip coast to coast is 40msec
– need for very high speed point-to-point connections

• tele-medicine
• video
• coupling high-end computational resources

4CMSC 417 – F01 (lect 3) copyright 2001 Jeffrey K. Hollingsworth

Data Link Layer

l Goal: transmit error free frames over the physical link
l Sample Issues:

– how big is a frame?
– can I detect an error in sending the frame?
– what demarks the end of the frame?
– how to control access to a shared channel?

5CMSC 417 – F01 (lect 3) copyright 2001 Jeffrey K. Hollingsworth

Frames
l Slice Raw bit stream up into frames

– need to have manageable unit of transmission
l Frame Boundary

– How do we know when a frame ends?
– Character count

• header indicates number of bytes
• problem: what if the header is corrupt, can’t tell end of frame

– Special character
• ASCII: DLE STX … DLE STE
• need to use character stuffing to send DLE characters

– send two DLE to indicate a DLE
– Special bit pattern - no longer tied to ASCII

• 01111110 - indicates end of frame
• need to use bit stuffing to send 01111110 as data

– insert 0 after 5 1’s
– use link level invalid bit patterns

• some bits may not be valid

6CMSC 417 – F01 (lect 3) copyright 2001 Jeffrey K. Hollingsworth

Other Link Functions

l Error Control
– may want to do sequence numbers and re-transmission
– this introduces overhead, but useful if probability of

failure is high

l Flow Control
– provide rate matching between sender and receiver
– sender has rules about when it can send: credits, etc.

7CMSC 417 – F01 (lect 3) copyright 2001 Jeffrey K. Hollingsworth

Error Correcting Codes

l Idea: add redundant information to permit recovery
– this is the dual of data compression (remove redundancy)

l Hamming distance (n)
– number of bit positions that differ in two words
– key idea: need n single bit errors to go from one word to the

other
– to detect d errors, need a hamming distance of d+1 from any

other valid word.
– to recover d errors, need a hamming distance of 2d + 1

• any error of d bits is still closer to correct word

l Parity bit
– ensure that every packet has an odd (or even) # of 1’s
– permits detection of one 1 bit error

8CMSC 417 – F01 (lect 3) copyright 2001 Jeffrey K. Hollingsworth

Error Codes (cont.)

l Error Recovery
– Given m bits of data and r bits of error code
– Want to correct any one bit error
– There are n words one bit from each valid message

• so need n+1 words for each valid message
• thus (n + 1) 2m <= 2n

• but n = m + r so (m + r + 1) <= 2r

l Hamming Code
– recovers from any one bit error
– number bits from left (starting at 1)

• power of two bits are parity
• rest contain data

– bit is checked by all parity bits in its sum of power expansion
• bit 11 is used to compute parity bits 1, 2, and 8

