Announcements

• Enrollment

- Now 11 on the waitlist
- Will not be expanding class

• Reading

- Chapter 3 (3.1-3.3)

High-speed Networking Testbeds

- The Internet was taking, now what is next?
- A series of small projects to test new ideas
 - a "government gigabit" (622 Mbps)
- Issues:
 - the speed of light is fixed
 - round-trip coast to coast is 40msec
 - need for very high speed point-to-point connections
 - tele-medicine
 - video
 - coupling high-end computational resources

Data Link Layer

- Goal: transmit error free frames over the physical link
- Sample Issues:
 - how big is a frame?
 - can I detect an error in sending the frame?
 - what demarks the end of the frame?
 - how to control access to a shared channel?

Frames

- Slice Raw bit stream up into frames
 - need to have manageable unit of transmission
- Frame Boundary
 - How do we know when a frame ends?
 - Character count
 - header indicates number of bytes
 - problem: what if the header is corrupt, can't tell end of frame
 - Special character
 - ASCII: DLE STX ... DLE STE
 - need to use character stuffing to send DLE characters
 - send two DLE to indicate a DLE
 - Special bit pattern no longer tied to ASCII
 - 01111110 indicates end of frame
 - need to use bit stuffing to send 01111110 as data
 - insert 0 after 5 1's
 - use link level invalid bit patterns
 - some bits may not be valid

CMSC 417 – F01 (lect 3)

Other Link Functions

• Error Control

- may want to do sequence numbers and re-transmission
- this introduces overhead, but useful if probability of failure is high
- Flow Control
 - provide rate matching between sender and receiver
 - sender has rules about when it can send: credits, etc.

Error Correcting Codes

- Idea: add redundant information to permit recovery
 - this is the dual of data compression (remove redundancy)
- Hamming distance (n)
 - number of bit positions that differ in two words
 - key idea: need n single bit errors to go from one word to the other
 - to detect d errors, need a hamming distance of d+1 from any other valid word.
 - to recover d errors, need a hamming distance of 2d + 1
 - any error of d bits is still closer to correct word

• Parity bit

- ensure that every packet has an odd (or even) # of 1's
- permits detection of one 1 bit error

Error Codes (cont.)

• Error Recovery

- Given m bits of data and r bits of error code
- Want to correct any one bit error
- There are n words one bit from each valid message
 - so need n+1 words for each valid message
 - thus (n + 1) 2^m <= 2ⁿ
 - but n = m + r so (m + r + 1) <= 2^r

• Hamming Code

- recovers from any one bit error
- number bits from left (starting at 1)
 - power of two bits are parity
 - rest contain data
- bit is checked by all parity bits in its sum of power expansion
 - bit 11 is used to compute parity bits 1, 2, and 8

CMSC 417 – F01 (lect 3)