
1CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

Announcements

l No class on Tuesday May 12
l Final is May 20, 1996 1:30-3:30 PM
l Reading: none
l Project #5

– due Wed. May 13 (in section)

2CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

Display and Window Management

l The screen is a resource in a workstation system
– multiple processes desire to access the device and control it
– OS needs to provide abstractions to permit the interaction

l Services
– protection
– windows
– multiplex keyboard and mouse
– configuration and placement

l Issues
– how to get good performance and remain device

independent
– how much policy to dictate to users

3CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

X Window System

l Designed for mid range workstations
– very little policy
– supports network display services

• applications can run one place and display another
• server is the display
• clients are programs that contact to the server

– basic protocol called X11r6
– event based programming model

• next event loop in application
– typical requests

• create window, draw line, draw circle, display text
– typical events

• key pressed, mouse moved, window (or part) now visible

4CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

X Libraries

l Programming raw X is tedious
l Many libraries exist to make it easier

– libraries are linked into applications
– X toolkit

• object oriented interface plus widget library
• widgets: buttons, menus, text, lists, etc.
• provides main message loop

– Motif
• like X tool kit but “standardized”
• more stylish look and feel

– Tcl/Tk
• Tk is the X interface (sort of Motif like)
• TCL is a language for describing applications

5CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

X Windows
Application

XT

Xlib

OS

Network

X Server (User Process)

TCP Connection

OS Screen

Mapped
Video Dev

Xlib

Device
Driver

6CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

X Window Security

l Sever can limit what machines and users can
connect and create windows
– uses normal network based security protocols
– also has a simple mode based on host names

l Window protection
– can restrict access to only those windows the process has

created

7CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

Windows (NT 3.51)

l Kernel exports a mapped device for video
l User Process (Win32) provides

– screen protection
• each process has a message queue for its events

– Win32 API Windows services
• dialog boxes
• graphics primitives

– Programs using API must be on the same machine

8CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

Win32 API

NT (3.5) Display Drivers

User Mode

Kernel Mode
System Services

Video
Miniport

I/O Manager

Graphics Engine (GDI)

DDI

Display Driver

Win32 SubsystemApplication Process

Win32 API

9CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

My Research Interests

l Parallel Computing
– There are limits to how fast one processor can run
– solution: use more than one processor

l Issues in parallel computing design
– do the processors share memory?

• is the memory “uniform”?
• how do processors cache memory?

– if not how do they communicate?
• message passing
• what is the latency of message passing

10CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

Parallel Processing

l What happens in parallel?
l Several different processing steps

– pipeline
– simple example: grep foo | sort > out
– called: multiple instruction multiple data (MIMD)

l The same operation
– every processor runs the same instruction (or no-instruction)
– called: single instruction multiple data (SIMD)
– good for image processing

l The same program
– every processor runs the same program, but not “lock step”
– called: single program multiple data (SPMD)
– most common model

11CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

Issues in effective Parallel Computation

l Load balancing
– every processor should to have some work to do.

l Latency hiding/avoidance
– getting data from other processors (or other disks) is slow
– need to either:

• hide the latency
– processes can “pre-fetch” data before they need it
– block and do something else while waiting

• avoid the latency
– use local memory (or cache)
– use local disk (of file buffer cache)

l Limit communication bandwidth
– use local data
– use “near” data (i.e. neighbors)

12CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

My Research:

l Given a parallel program and a machine
l Try to answer performance related questions

– Why is the programming running so slowly?
– How do I fix it?

l Issues:
– how to measure a program without changing it?
– how do you find (and then present) the performance

problem, not tons of statistics?

l Techniques:
– dynamic data collection
– automated search
– analysis of process interactions

13CMSC 412 - S98 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

My Research (I/O):

l Given lots of data to access, and lots of disks
l How do you make effective use of these disks?
l Questions:

– What should I/O look like?
• virtual memory
• file pointer based I/O
• direct I/O

– Where should the data be placed?
• central servers vs. distributed to each node
• how do improve data locality

– What information can the application provide?
• hints about future access patterns?
• what data is going to be re-used?

