
1CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

Announcements

l Final is May 20, 1996 1:30-3:30 PM
l Reading: none
l Course evaluations were distributed
l Dr. Argawala is looking for students to work on

realtime systems, if interested please speak to him



2CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

File Server State

l Does the fileserver maintain information between
requests?

l Stateless
– example: NFS
– each request contains a request to read/write a specific part

of a file
– requests must be itempotent

• the same request can be applied several times
– makes recovery of failed clients/servers easier

l Stateful
– example: AFS
– servers maintain connections for clients
– improves performance
– required for server based cache management



3CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

/

Mounting a filesystem

l Mount attaches a filesystem to a directory
– can be used for local or remote (NFS) filesystems

/

fs

mashie2

Before Mount

filesystem 
to mount

hollings

bin

/

/

fs

mashie2

hollings

binmount point



4CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

NFS
l Provides a way to mount remote filesystems

– can be done explicitly
– can be done automatically (called an automounter)
– clients are provided “file handle” by the server for future use

l Uses VFS: extended UNIX filesystem
– inodes are replaced by vnodes

• network wide unique inodes
• can refer to local or remote files

VFS

NFS ClientUNIX 
Filesystem

RPC/XDR

VFS

UNIX 
Filesystem

NFS Server

RPC/XDR

Network

read/write/open



5CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

NFS (cont.)

l Requests
– are sent via RPC to the server
– include read/write
– query: lookup this directory info

• must be done one step (directory) at a time
– change meta data: file permissions, etc.

l Popular due to free implementations
l Provides no coherency



6CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

AFS

l Designed to scale to 5,000 or more workstations
l Location independent naming

– within a single cell

l volumes
– basic unit of management
– can vary in size
– can be migrated among servers

l names are mapped to “fids”
– 96 bit unique id’s for a file
– three parts: volume, vnode, and uniqidentifier
– location information is stored in a volume to location DB

• replicated on every server



7CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

AFS (cont.)

l File Access
– open: file is transferred from server to client

• very large files may only be partially transferred
– read/write: performed on the client
– close: file (if dirty) is written back to server

• can fail if the disk is full

l Consistency
– clients have callbacks
– sever informs client when another client writes data
– only applies to open operation
– only requires communication when:

• more than one client wants to write
• one client wants to write and others to read



8CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

Process Migration

l How do you move a process from one system to
another?

l Mechanism Issues:
– need to save and restore all of the process state

• memory
• registers
• pcb info

– what if the process is talking to other processes
• how do they find the moved process?

– often leave a forwarding pointer

l Policy Issues:
– when is is cost effective to move the process?

• needs to run for a long enough time to be worth the
trouble



9CMSC 412 - S96  (lect 24) copyright 1996  Jeffrey K. Hollingsworth

Distributed Batch Queuing

l Problem: Many sequential compute bound jobs
l Environment: lots of semi-autonomous workstations
l Solution:

– support submitting jobs to a pool of workstations
• find “idle” workstations and use them

– should look like they are running on a local workstation

l Issues:
– what if the workstation “owner” returns?

• need to checkpoint job and migrate it
– how to make remote jobs look like local jobs?

l Examples:
– Condor (aka IBM load leveler)
– Piranha


