
1CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

Announcements

l Reading Chapter 17 (skip 17.6.1 and 17.6.4)
– problems: 17.1, 17.3, 17.4

l Last day for Midterm #2 re-grades is Thursday

2CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

Remote Procedure Calls

l Provide a way to access remotes services
l Look like “normal” procedure calls
l Issues:

– binding functions to services
• can use static binding (like kernel trap #’s)
• can use a nameserver

– data format
• different machine may have different formats
• translation is called marshalling

– pick a common way to encode info (e.g. XDR)
– always send in this common format

– failures
• what if a host dies while and RPC is active?

3CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

RPC Example
debit(“Jones”, 123, 45.00)

debit(char *name, int acct, float amt) {
 XDR_string(buffer, name);
 XDR_int(buffer, acct);
 XDR_float(buffer, amt);
 send(Server, DEBIT, buffer);
 receive(Server, ret, NULL);
 return(ret);
}

Stub

Call

Messages

Receive(caller, request, buffer)
…
 case DEBIT:
 XDR_string(buffer, name);
 XDR_int(buffer, acct);
 XDR_float(buffer, amt);
 ret = debit(name, acct, amt);
 Send(caller, ret)
}

“45”
string “Jones”

int “123”

float “45.00”

Int

Int “45”

Server

4CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

RPC Generators

l Given a list of functions to make into RPC
l Generate the code for:

– RPC stubs (for clients to call)
• marshalling code for each parameter
• utility routines to marshal structures/records
• code to send messages and wait for responces

– Server code
• case statement for each RPC type
• un-marshal parameters
• call local routine

– detecting errors
– checking version numbers between client/server

5CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

Failures
l Fail Stop

– system either produces the correct answer or no answer
– hard to know “what” failed

• local network card
• network link
• remote network card
• remote system
• remote software

l Byzantine Failure
– systems can “lie” and produce wrong answers

• a message shows up but some of the data is wrong
– can use check sums to detect this failure mode

• does not deal with malicious failure
– considered a “hard” problem

6CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

Distributed Filesystems

l Provide the same semantics as a local filesystem
– data is stored at various locations in the system

• often stored in central fileservers
• can be stored in serverless fileservers

l Naming
– location transparency

• filenames don’t imply information about location
– location independence

• can move the file without changing names
– naming files

• host:local-name
– not transparent

• global-name
– transparent, requires something to coordinate names

7CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

DFS Performance Issues

l “normal” filesystem issues
– disk parameters: seeks time, rotational latency
– filesystem time: directory structure, fat/inodes

l distributed system issues
– network:

• latency (time for small requests)
• bandwidth (time to move entire disk blocks)

– coordination
• time to access servers

– namespace server
– fileserver

8CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

Caching

l To improve performance, cache DFS information
– goal: improve response times for overall DFS

l Local Cache
– memory cache

• data is stored in memory of local system
– disk cache

• data is stored on the disk of the local system

l Server Cache
– memory

• can put lots of memory here so most “popular” files are in
memory

9CMSC 412 - S98 (lect 23) copyright 1996-8 Jeffrey K. Hollingsworth

Caching (cont)

l Need to maintain consistency
– Client initiated caching

• client contacts the server “Is this still OK?”
– Server initiated caching

• server calls back to the client “dispose of those stale bits”

l What happens on write?
– write-though caching

• slow for writes
– delayed writes

• faster for writes
• what happens when a failure occurs?

