

Access Matrix

	F1	F2	F3	Laser Printer	
D1	read		execute		
D2			execute	print	
D3	read, write		execute		
D4			execute		
D5		delete			

• Rows represent users or groups of users

• Columns represent files, printers, etc.

Capabilities

- Un-forgeable Key to access something
- Implementation: a string
 - I.e. a long numeric sequence for a copier)
- Implementation: A protected memory region
 - tag memory (or procedures) with access rights
 - example x86 call gate abstraction
 - permit rights amplification

Monitoring

Record (log) significant events

- attempts to login to the system
- changes to selected files or directories

• Possible to compromise the log

- the user or software breaking in could delete all or part of the logs
- could record logs to non-erasable storage
 - have a line printer attached to the machine
 - use WORM drives
- send data to a secure remote host

Encryption: protecting info from being read

• Given a message m

- use a key k, and function E_k to compute $E_k(m)$
- store or send only $E_k(m)$
- use a second second key k and function $D_{k'}$ such that
 - $D_{k'}(E_k(m)) = m$
- E_k and $D_{k'}$ need not be kept a secrete
- If k=k' it's called private key encryption
 - need to keep k secret
 - example DES
- if k != k', it's called public key encryption
 - need only keep one of them secret
 - if k' is secret, anyone can send a private message
 - if k is secret, it is possible to "sign" a message
 - still need a way to authenticate k or k' for a user
 - example RSA

Transposition Cipher

Block of text is used to break up digrams

• To Break:

- each letter is itself, so normal distribution of letters is seen
- guess number of columns (verify with known plaintext)
- order columns using trigram frequency

From: Computer Networks, 3rd Ed. by Andrew S. Tanenbaum, (c)1996 Prentice Hall.

CMSC 412 - S98 (lect 20)

DES

- Block cipher: uses 56 bit keys, 64 bits of data
- Uses 16 stages of substitution
- Variations
 - cipher block chaining: xor output of block n with into block n+1
 - cipher feedback mode: use 64bit shift register
 - can produce one byte at a time

One Time Pad

- Key Idea: randomness in key
- Create a random string as long as the message
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- Almost impossible to break
- Some practical problems
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message

Networks are divided into layers

• ISO - seven layer reference model

- Application (end application)
 - firewalls work at this layer
- Presentation (encryption or compression)
- Session (end-to-end connections)
- Transport (splitting data into packets)
- Network (routing packets)
 - routers work at this later
- Link (moves frames and detects errors)
 - bridges at this layer
- Physical (EE type stuff)
- TCP/IP three layer model
 - link, network, transport/session/presentation

Networks

Topology

- Fully connected link between all sites
- Partially connected
 - links between subset of sites
 - can be an arbitrary graph
- Hierarchical networks
 - network topology looks like a tree
 - internal nodes route messages between different subtrees
 - if an internal node fails, children can not communicate with each other
 - star network hierarchical network with single internal node

