
1CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Announcements

l Reading Chapter 11 (11.1-11.5)
– suggested problems: 11.1, 11.2, 11.6, 11.8

l Midterm #1 was returned on Th. before spring break
– all request for re-grade must be submitted in writing by April

2 at 10:45 AM.

l Program #3 is due on Wed. in discussion section

2CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Filesystems

l Raw Disks can be viewed as:
– a linear array of fixed sized units of allocation, called blocks

• assume that blocks are error free (for now)
• typical block size is 512 to 4096 bytes

– can update a block in place, but must write the entire block
– can access any block in any desired order

• blocks must be read as a unit
• for performance reasons may care about “near” vs. “far”

blocks (but that is covered in a future lecture)

l A Filesystem:
– provides a hierarchical namespace via directories
– permits files of variable size to be stored
– provides disk protection by restricting access to files based

on permissions

3CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

File System Implementation

Logical file system:
Knows about directories, application view of file names

Application Programs

File Organization Module:
Can translate logical block addresses to physical block addresses

Basic File System:
Issues physical block read/write commands

Low Level I/O Control
Interfaces to hardware

4CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Allocation Methods
l How do we select a free disk block to use?
l Contiguous allocation

– allocate a contiguous chunk of space to a file
– directory entry indicates the starting block and the length of

the file
– easy to implement, but

• how to satisfy a given sized request from a list of free
holes?

• two options
– first fit (find the first gap that fits)
– best fit (find the smallest gaps that is large enough)

• What happens if one wants to append to file?
– from time to time, one will need to repack files

5CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Linked Allocation

l Each file is a linked list of disk blocks, blocks can be
located anywhere
– Directory contains a pointer to the first and last block of a file
– Each block contains a pointer to the next block
– This is essentially a linked-list data structure

l Problems:
– Best for sequential access data structures

• requires sequential access whether you want to or not!
– Reliability - one bad sector and all portions of your file

downstream are lost

l Useful fix:
– Maintain a separate data structure just to keep track of

linked lists
– Data-structure includes pointers to actual blocks

6CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Indexed Allocation
l Bring all pointers together in an index block

– Each file has its own index block - ith entry of index block
points to ith block making up the file

l How large to make an index block?
– unless one only wants to support fixed size files, index block

scheme needs to be extensible

l Linked scheme:
– maintain a linked list of indexed blocks

l Multilevel index:
– Index block can point to other index blocks (which point to

index blocks), which point to files

l Hybrid multi-level index
– first n blocks are from a fixed index
– next m blocks from an indirect index
– next o blocks from a double indirect index

7CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Hybrid Multi-level Index (UNIX)
l Observations

– most files are small
– most of the space on the disk is consumed by large files

l Want a flexible way to support different sized
– assume 4096 byte block
– first 12 blocks (48 KB) are from a fixed index
– next 1024 blocks (4 MB) from an indirect index
– next 10242 blocks (16 GB) from a double indirect index
– final 10243 blocks (64 TB) from a triple indirect index

directory entry

Indirect
Index

double indirect index

8CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Modified Linked Allocation (FAT)
l Section of disk contains a table

– called the file allocate table (FAT)
– used in MS-DOS

l Directory entry contains the block number of the first
block in the file

l Table entry contains the number of the next block in
the file

l Last block has a end-of-file value as a table entry
directory entry

ith block corresponds to the ith FAT entry

last entry
(for a file)
has EOF ptr FAT

9CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Performance Issues

l FAT
4 simple, easy to implement
4 faster to traverse than linked allocation
– random access requires following links

l Hybrid indirect
4 fast access to any part of the file
– more complex

10CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Free Space Management

l How do we find a disk block to allocate?
l Bit Vectors

– array of bits (one per block) that indicates if a block is free
– compact so can keep in memory

• 1.3 GB disk, 4K blocks -> 78K per disk
– easy to find long runs of free blocks

l Linked lists
– each disk block contains the pointer to the next free block
– pointer to first free block is keep in a special location on disk

l Run length encoding (called counting in book)
– pointer to first free block is keep in a special location on disk
– each free block also includes a count of the number of

consecutive blocks that are free

11CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

Implementing Directories

l Linear List
– array of names for files
– must search entire list to find or allocate a filename
– sorting can improve search performance, but adds

complexity

l Hash table
– use hash function to find filenames in directory
– needs a good hash function
– need to resolve collisions
– must keep table small and expand on demand since many

directories are mostly empty

12CMSC 412 - S98 (lect 16) copyright 1996 Jeffrey K. Hollingsworth

DOS Directories
l Root directory

– immediately follows the FAT

l Directory is a table of 32 byte entries
– 8 byte file name, 3 byte filename extension
– size of file, data and time stamp, starting cluster number of

the file, file attribute codes
– Fixed size and capacity

l Subdirectory
– This is just a file
– Record of where the subdirectory is located is stored in the

FAT

