
1CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Announcements

l Reading 5 (5.1-5.3,5.6)
l Midterm #1 is March 10 in class

– covers material through and including lecture 11
• problems at the end of the chapters
• synchronization problems
• questions about the project

– Suggestions for study
• see problems on web page

2CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

CPU Scheduling

l Manage CPU to achieve several objectives:
– maximize CPU utilization
– minimize response time
– maximize throughput
– minimize turnaround time

l Multiprogrammed OS
– multiple processes in executable state at same time
– scheduling picks the one that will run at any give time (on a

uniprocessor)

l Processes use the CPU in bursts
– may be short or long depending on the job

3CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Types of Scheduling

l At least 4 types:
– long-term - add to pool of processes to be executed
– medium-term - add to number of processes partially or fully

in main memory
– short-term - which available process will be executed by the

processor
– I/O - which process’s pending I/O request will be handled by

an available I/O device

l Scheduling changes the state of a process

4CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Process State Transitions

New

Exit

Ready,
suspend Ready Running

Blocked
Blocked,
suspend

Long-term scheduling

Medium-
term
scheduling

Short-
term
scheduling

Event
wait

5CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Long-term scheduling
l Determine which programs admitted to system for

processing - controls degree of multiprogramming
l Once admitted, program becomes a process, either:

– added to queue for short-term scheduler
– swapped out (to disk), so added to queue for medium-term

scheduler

l Batch Jobs
– Can system take a new process?

• more processes implies less time for each existing one
• add job(s) when a process terminates, or if percentage of

processor idle time is greater than some threshold
– Which job to turn into a process

• first-come, first-serve (FCFS), or to manage overall
system performance (e.g. based on priority, expected
execution time, I/O requirements, etc.)

6CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Medium vs. Short Term Scheduling

l Medium-term scheduling
– Part of swapping function between main memory and disk

• based on how many processes the OS wants available
at any one time

• must consider memory management if no virtual memory
(VM), so look at memory requirements of swapped out
processes

l Short-term scheduling (dispatcher)
– Executes most frequently, to decide which process to

execute next
– Invoked whenever event occurs that interrupts current

process or provides an opportunity to preempt current one in
favor of another

– Events: clock interrupt, I/O interrupt, OS call, signal

7CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Scheduling criteria
l Per processor, or system oriented

– CPU utilization
• maximize, to keep as busy as possible

– throughput
• maximize, number of processes completed per time unit

l Per process, or user oriented
– turnaround time

• minimize, time of submission to time of completion.
– waiting time

• minimize, time spent in ready queue - affected solely by
scheduling policy

– response time
• minimize, time to produce first output
• most important for interactive OS

8CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Scheduling criteria
non-performance related

l Per process
– predictability

• job should run in about the same amount of time,
regardless of total system load

l Per processor
– fairness

• don’t starve any processes, treat them all the same
– enforce priorities

• favor higher priority processes
– balance resources

• keep all resources busy

9CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Short-term scheduling algorithms

l First-Come, First-Served (FCFS, or FIFO)
– as process becomes ready, join Ready queue, scheduler

always selects process that has been in queue longest
– better for long processes than short ones
– favors CPU-bound over I/O-bound processes
– need priorities, on uniprocessor, to make it effective

10CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Algorithms (cont.)

l Round-Robin (RR)
– use preemption, based on clock - time slicing

• generate interrupt at periodic intervals
– when interrupt occurs, place running process in Ready

queue, select next process to run using FCFS
– what’s the length of a time slice

• short means short processes move through quickly, but
high overhead to deal with clock interrupts and
scheduling

• guideline is time slice should be slightly greater than time
of “typical job” CPU burst

– problem dealing with CPU and I/O bound processes

11CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Algorithms (cont.)

l Shortest Process Next (SPN)
– non-preemptive
– select process with shortest expected processing time
– improves response time, but increases its variability,

reducing predictability - provably decreases average waiting
time

– problem is estimating required processing time
– risk of starving longer processes, as long as there are

shorter processes around
– not good for time sharing - non-preemptive

12CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Algorithms (cont.)

l Shortest Remaining Time (SRT)
– preemptive version of SPN
– scheduler chooses process with shortest expected

remaining process time
– still need estimate of processing time, and can starve longer

processes
• no bias in favor of longer processes, as in FCFS
• no extra interrupts as in RR, so reduced overhead

– must record elapsed service times
– should give better turnaround time than SPN

13CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Priority Based Scheduling
l Priorities

– assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

l More than one ready queue, ordered by priorities
RQ0

CPU

RQ1

RQn

Blocked queue

...Admit

Event
Occurs

Event Wait

Preemption

Dispatch Release

14CMSC 412 - S98 (lect 10) copyright 1996 Jeffrey K. Hollingsworth

Priority Algorithms

l Fixed Queues
– processes are statically assigned to a queue
– sample queues: system, foreground, background

l Multilevel Feedback
– processes are dynamically assigned to queues
– penalize jobs that have been running longer
– preemptive, with dynamic priority
– have N ready queues (RQ0-RQN),

• start process in RQ0
• if quantum expires, moved to i + 1 queue

