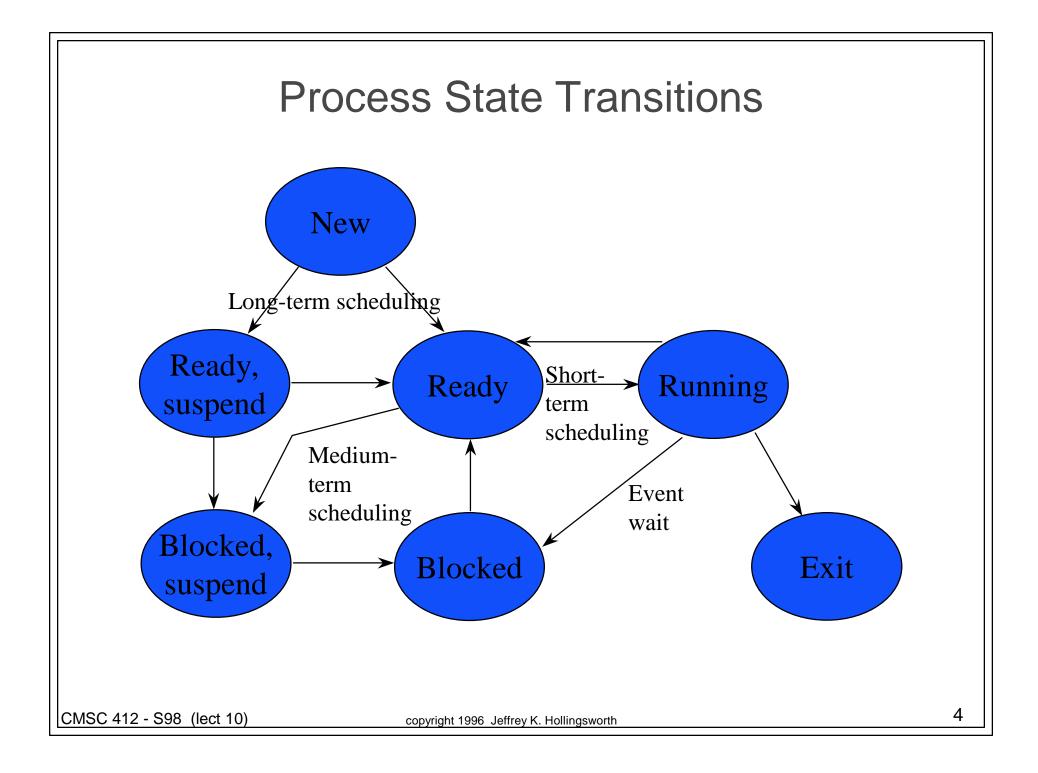
Announcements

- Reading 5 (5.1-5.3,5.6)
- Midterm #1 is March 10 in class
 - covers material through and including lecture 11
 - problems at the end of the chapters
 - synchronization problems
 - questions about the project
 - Suggestions for study
 - see problems on web page


CPU Scheduling

- Manage CPU to achieve several objectives:
 - maximize CPU utilization
 - minimize response time
 - maximize throughput
 - minimize turnaround time
- Multiprogrammed OS
 - multiple processes in executable state at same time
 - scheduling picks the one that will run at any give time (on a uniprocessor)
- Processes use the CPU in bursts
 - may be short or long depending on the job

Types of Scheduling

• At least 4 types:

- long-term add to pool of processes to be executed
- medium-term add to number of processes partially or fully in main memory
- short-term which available process will be executed by the processor
- I/O which process's pending I/O request will be handled by an available I/O device
- Scheduling changes the state of a process

Long-term scheduling

- Determine which programs admitted to system for processing - controls degree of multiprogramming
- Once admitted, program becomes a process, either:
 - added to queue for short-term scheduler
 - swapped out (to disk), so added to queue for medium-term scheduler

Batch Jobs

- Can system take a new process?
 - more processes implies less time for each existing one
 - add job(s) when a process terminates, or if percentage of processor idle time is greater than some threshold
- Which job to turn into a process
 - first-come, first-serve (FCFS), or to manage overall system performance (e.g. based on priority, expected execution time, I/O requirements, etc.)

Medium vs. Short Term Scheduling

Medium-term scheduling

- Part of swapping function between main memory and disk
 - based on how many processes the OS wants available at any one time
 - must consider memory management if no virtual memory (VM), so look at memory requirements of swapped out processes
- Short-term scheduling (dispatcher)
 - Executes most frequently, to decide which process to execute next
 - Invoked whenever event occurs that interrupts current process or provides an opportunity to preempt current one in favor of another
 - Events: clock interrupt, I/O interrupt, OS call, signal

Scheduling criteria

- Per processor, or system oriented
 - CPU utilization
 - maximize, to keep as busy as possible
 - throughput
 - maximize, number of processes completed per time unit
- Per process, or user oriented
 - turnaround time
 - minimize, time of submission to time of completion.
 - waiting time
 - minimize, time spent in ready queue affected solely by scheduling policy
 - response time
 - minimize, time to produce first output
 - most important for interactive OS

Scheduling criteria non-performance related

Per process

- predictability
 - job should run in about the same amount of time, regardless of total system load

Per processor

- fairness
 - don't starve any processes, treat them all the same
- enforce priorities
 - favor higher priority processes
- balance resources
 - keep all resources busy

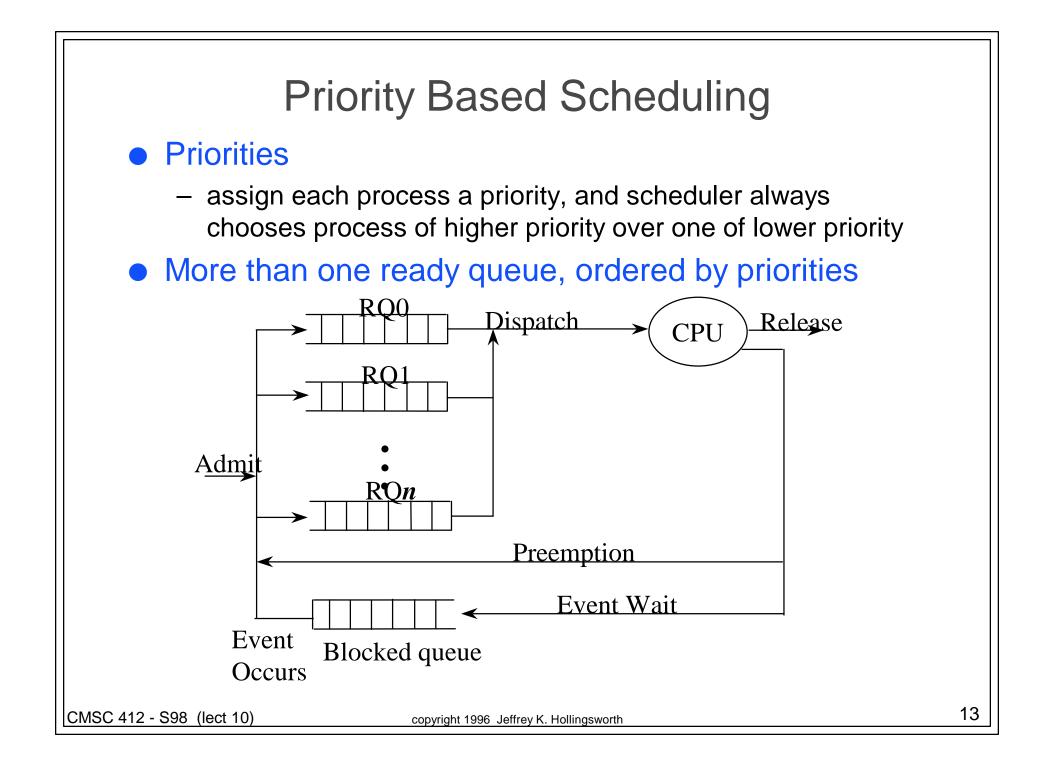
Short-term scheduling algorithms

- First-Come, First-Served (FCFS, or FIFO)
 - as process becomes ready, join Ready queue, scheduler always selects process that has been in queue longest
 - better for long processes than short ones
 - favors CPU-bound over I/O-bound processes
 - need priorities, on uniprocessor, to make it effective

Algorithms (cont.)

• Round-Robin (RR)

- use preemption, based on clock time slicing
 - generate interrupt at periodic intervals
- when interrupt occurs, place running process in Ready queue, select next process to run using FCFS
- what's the length of a time slice
 - short means short processes move through quickly, but high overhead to deal with clock interrupts and scheduling
 - guideline is time slice should be slightly greater than time of "typical job" CPU burst
- problem dealing with CPU and I/O bound processes


Algorithms (cont.)

Shortest Process Next (SPN)

- non-preemptive
- select process with shortest expected processing time
- improves response time, but increases its variability, reducing predictability - provably decreases average waiting time
- problem is estimating required processing time
- risk of starving longer processes, as long as there are shorter processes around
- not good for time sharing non-preemptive

Algorithms (cont.)

- Shortest Remaining Time (SRT)
 - preemptive version of SPN
 - scheduler chooses process with shortest expected remaining process time
 - still need estimate of processing time, and can starve longer processes
 - no bias in favor of longer processes, as in FCFS
 - no extra interrupts as in RR, so reduced overhead
 - must record elapsed service times
 - should give better turnaround time than SPN

Priority Algorithms

• Fixed Queues

- processes are statically assigned to a queue
- sample queues: system, foreground, background

Multilevel Feedback

- processes are dynamically assigned to queues
- penalize jobs that have been running longer
- preemptive, with dynamic priority
- have **N** ready queues (RQ0-RQ**N**),
 - start process in RQ0
 - if quantum expires, moved to i + 1 queue