
1CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Announcements

l Reading chapter 6 (6.4 and 6.5)
l Midterm #1 is March 5 in class
l Late Policy for programs

– no late work will be accepted
– illness and family emergency will be considered on a case

by case basis



2CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Critical Section (Algorithm 2)
l Keep an array of flags indicating which processes

want to enter the section
bool flag[2];

repeat
    flag[i] = true;
    while (flag[j]);
    
    // critical section

    flag[i] = false;

    // non-critical section
until false;

l This does NOT work either!
– possible to have both flags set to 1

Both processes
could be here at
the same time



3CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Critical Section (Algorithm 3)

l Combine 1 & 2

bool flag[2];
int turn;

repeat
    flag[i] = true;
    turn = j;
    while (flag[j]&& turn ==j);
    
    // critical section

    flag[i] = false;

    // non-critical section
until false;

l This one does work!  Why?



4CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Critical Section (many processes)

l What if we have several processes?
l One option is the Bakery algorithm
bool choosing[n];
integer number[n];

choosing[i] = true;
number[i] = max(number[0],..number[n-1])+1;
choosing[i] = false;
for j = 0 to n-1

while choosing[j];
while number[j] != 0 and ((number[j], j) < number[i],i);

end
// critical section
number[i] = 0



5CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Bakery Algorithm - explained

l When a process wants to enter critical section, it
takes a number
– however, assigning a unique number to each process is not

possible
• it requires a critical section!

– however, to break ties we can used the lowest numbered
process id

l Each process waits until its number is the highest
one
– it can then enter the critical section

l provides fairness since each process is served in the
order they requested the critical section



6CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Synchronization Hardware
l If it’s hard to do synchronization in software, why not

do it in hardware?
l Disable Interrupts

– works, but is not a great idea since important events may be
lost.

– doesn’t generalize to multi-processors

l test-and-set instruction
– one atomic operation

• executes without being interrupted
– operates on one bit of memory
– returns the previous value and sets the bit to one

l swap instruction
– one atomic operation
– swap(a,b) puts the old value of b into a and of a into b



7CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Using Test and Test for Mutual Exclusion
repeat

while test-and-set(lock);
// critical section
lock = false;
// non-critical section

until false;

l bounded waiting time version
repeat

waiting[i] = true;
key = true;
while waiting[i] and key

key = test-and-set(lock);
waiting[i] = false;
// critical section
j = (i + 1) % n
while (j != i) and (!waiting[j])

j = (j + 1) % n;
if (j == i)

lock = false;
else

waiting[j] = false;
// non-critical section

until false;

Note: no priority based on wait time

no process waiting

release process j

look for a waiting process

wait until released or no one busy



8CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Semaphores

l getting critical section problem correct is difficult
– harder to generalize to other synchronization problems
– Alternative is semaphores

l semaphores
– integer variable
– only access is through atomic operations

l P (or wait)
while s <= 0;
s = s - 1;

l V (or signal)
s = s + 1



9CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Using Semaphores
l critical section

repeat
P(mutex);
// critical section
V(mutex);
// non-critical section

until false;

l Require that Process 2 begin statement S2  after
Process 1 has completed statement S1:
Process 2

S1
V(synch)

Process 1
P(synch)
S2



10CMSC 412 - S98  (lect 07) copyright 1996  Jeffrey K. Hollingsworth

Implementing semaphores

l Busy waiting implementations
l Instead of busy waiting, process can block itself

– place process into queue associated with semaphore
– state of process switched to waiting state
– transfer control to CPU scheduler
– process gets restarted when some other process executes a

signal operations


