
1CMSC 412 - S98 (lect 02))

Announcements

l Programming Assignment #1 is on the web page
l Reading for next week:

– Chapter 3 (sections 3.2 to 3.9)

l Programming Assignment #0
– files are available on the web page

2CMSC 412 - S98 (lect 02))

Why Study Operating Systems?

l They are large and complex programs
– good software engineering examples

l There is no perfect OS
– too many types of users

• real-time, desktop, server, etc...
– many different models and abstractions are possible

• OS researchers have been termed abstraction
merchants

l Many levels of abstraction
– hardware details: where the bits really go and when
– high level concepts: deadlock, synchronization

3CMSC 412 - S98 (lect 02))

Why Study Operating Systems (cont.)

l Necessity
– reliability: when the OS is down, computer is down
– recovery: when the OS goes down it should not take all of

your files with it.

l It’s fun
– the details are interesting (at least I think so :)
– thinking about concurrency makes you better at writing

software for other areas

4CMSC 412 - S98 (lect 02))

Computer Systems

l Computers have many different devices
– I/O Devices
– Memory

• volatile storage
– Processor(s)

Processor Memory

Mem. Controller

I/O Bus Controller
Memory Bus

I/O Bus

Display AdapterSCSI Adapter

SCSI Bus

Disk Drives Tape Drive Optical Drive

Network Adapter

Network

5CMSC 412 - S98 (lect 02))

I/O Systems

l Many different types of devices
– disks
– networks
– displays
– mouse
– keyboard
– tapes

l Each have a different expectation for performance
– bandwidth

• rate at which data can be moved
– latency

• time from request to first data back

6CMSC 412 - S98 (lect 02))

Different Requirements lead to Multiple
Buses

l Processor Bus (on chip)
– > 1Gigabyte/sec

l Memory Bus (on processor board)
– ~500 megabytes per second

l I/O Bus (PCI, MCA)
– ~100 megabytes per second
– buses are more complex than we saw in class

• show PCI spec.

l Device Bus (SCSI)
– tens of megabytes per second

7CMSC 412 - S98 (lect 02))

Issues In Busses

l Performance
– increase the data bus width
– have separate address and data busses
– block transfers

• move multiple words in a single request

l Who controls the bus?
– one or more bus masters

• a bus master is a device that can initiate a bus request
– need to arbitrate who is the bus master

• assign priority to different devices
• use a protocol to select the highest priority item

– daisy chained
– central control

8CMSC 412 - S98 (lect 02))

Disks

l Several types:
– Hard Disks - rigid surface with magnetic coating
– Floppy disks - flexible surface with magnetic coating
– Optical (read only, write once, multi-write)

l Hard Disk Drives:
– collection of platters
– platters contain concentric rings called tracks
– tracks are divided into fixed sized units called sectors
– a cylinder is a collection of all tracks equal distant from the

center of disk
– Current Performance:

• capacity: megabytes to tens of gigabytes
• throughput: sustained < 10 megabytes/sec
• latency: mili-seconds

9CMSC 412 - S98 (lect 02))

I/O Interfaces
l Need to adapt Devices to CPU speeds
l Moving the data

– Programmed I/O
• Special instructions for I/O

– Mapped I/O
• looks like memory only slower

– DMA (direct memory access)
• device controller can write to memory
• processor is not required to be involved
• can grab bus bandwidth which can slow the processor

down

10CMSC 412 - S98 (lect 02))

I/O Interrupts

l Interrupt defined
– indication of an event
– can be caused by hardware devices

• indicates data present or hardware free
– can be caused by software

• system call (or trap)
– CPU stops what it is doing and executes a handler function

• saves state about what was happening
• returns where it left off when the interrupt is done

l Need to know what device interrupted
– could ask each device (slow!)
– instead use an interrupt vector

• array of pointers to functions to handle a specific interrupt

11CMSC 412 - S98 (lect 02))

I/O Operations

l Synchronous I/O
– program traps into the OS
– request is made to the device
– processor waits for the device
– request is completed
– processor returns to application process

l Asynchronous I/O
– request is made to the device
– processor records request
– processor continues program

• could be a different one
– request is completed and device interrupts
– processor records that request is done
– program execution continues

