
Announcements

No class on Thursday

- Final is May 20, 1996 1:30-3:30 PM
 - in Chemistry Room 115 (same room as lecture)
- Reading: none
- Deadline for midterm #2 re-grades
 - Friday (May 10) at 5:00 P.M.
- Final review
 - Sat May 18 (4:00-6:00)
 - room CLB 104
- Project #5
 - due Monday May 13 (by 5:00 PM)
 - turn in to Charles in room 1109 (4:30 to 5:30)

Windows (NT 3.51)

- Kernel exports a mapped device for video
- User Process (Win32) provides
 - screen protection
 - each process has a message queue for its events
 - Win32 API Windows services
 - dialog boxes
 - graphics primitives
 - Programs using API must be on the same machine

My Research Interests

• Parallel Computing

- There are limits to how fast one processor can run
- solution: use more than one processor
- Issues in parallel computing design
 - do the processors share memory?
 - is the memory "uniform"?
 - how do processors cache memory?
 - if not how do they communicate?
 - message passing
 - what is the latency of message passing

Parallel Processing

- What happens in parallel?
- Several different processing steps
 - pipeline
 - simple example: grep foo | sort > out
 - called: *multiple instruction multiple data* (MIMD)
- The same operation
 - every processor runs the same instruction (or no-instruction)
 - called: *single instruction multiple data* (SIMD)
 - good for image processing
- The same program
 - every processor runs the same program, but not "lock step"
 - called: single program multiple data (SPMD)
 - most common model

Issues in effective Parallel Computation

Load balancing

- every processor should to have some work to do.
- Latency hiding/avoidance
 - getting data from other processors (or other disks) is slow
 - need to either:
 - hide the latency
 - processes can "pre-fetch" data before they need it
 - block and do something else while waiting
 - avoid the latency
 - use local memory (or cache)
 - use local disk (of file buffer cache)

Limit communication bandwidth

use local data

— use "near" data (i.e. neighbors) CMSC 412 - S96 (lect 25) copyright 1996 Jeffrey K. Hollingsworth

My Research:

- Given a parallel program and a machine
- Try to answer performance related questions
 - Why is the programming running so slowly?
 - How do I fix it?

Issues:

- how to measure a program without changing it?
- how do you find (and then present) the performance problem, not tons of statistics?

• Techniques:

- dynamic data collection
- automated search
- analysis of process interactions

My Research (I/O):

- Given lots of data to access, and lots of disks
- How do you make effective use of these disks?
- Questions:
 - What should I/O look like?
 - virtual memory
 - file pointer based I/O
 - direct I/O
 - Where should the data be placed?
 - central servers vs. distributed to each node
 - how do improve data locality
 - What information can the application provide?
 - hints about future access patterns?
 - what data is going to be re-used?

CMSC 412 - S96 (lect 25)