
1CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Announcements

● Reading 9.6-9.7

2CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Handling a page fault

1) Check if the reference is valid
– if not, terminate the process

2) Find a page frame to allocate for the new process
– for now we assume there is a free page frame.

3) Schedule a read operation to load the page from disk
– we can run other processes while waiting for this to

complete

4) Modify the page table entry to the page
5) Restart the faulting instruction

– hardware normally will abort the instruction so we just return
from the trap to the correct location.

3CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

What happens when we fault and there
are no more physical pages?

● Need to remove a page from main memory
– if it is “dirty” we must store it to disk first.

• dirty pages have been modified since they were last
stored on disk.

● How to we pick a page?
– Need to choose an appropriate algorithm

• should it be global?
• should it be local (one owned by the faulting process)

4CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Page Replacement Algorithms
● FIFO

– Replace the page that was brought in longest ago
– However

• old pages may be great pages (frequently used)

• number of page faults may increase when one increases
number of page frames (discouraging!)

– called belady’s anomaly
– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

● Optimal
– Replace the page that will be used furthest in the future
– Good algorithm(!) but requires knowledge of the future
– With good compiler assistance, knowledge of the future is

sometimes possible

5CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Page Replacement Algorithms

● LRU
– Replace the page that was actually used longest ago
– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page

● Approximate LRU algorithms
– maintain reference bit(s) which are set whenever a page is

used
– at the end of a given time period, reference bits are cleared

6CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

FIFO Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1) fault
• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (2,3,4) fault, replacement
• access 1 - (3,4,1) fault, replacement

• access 2 - (4,1,2) fault, replacement

• access 5 - (1,2,5) fault, replacement
• access 1- (1,2,5)

• access 2 - (1,2,5)

• access 3 - (2,5,3) fault, replacement
• access 4 - (5,3,4) fault, replacement

• access 5 - (5,3,4)

– 9 page faults

7CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

LRU Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1) fault

• access 2 - (1,2) fault
• access 3- (1,2,3) fault

• access 4 - (2,3,4) fault, replacement

• access 1 - (3,4,1) fault, replacement
• access 2 - (4,1,2) fault, replacement

• access 5 - (1,2,5) fault, replacement

• access 1- (2,5,1)
• access 2 - (5,1,2)

• access 3 - (1,2,3) fault, replacement

• access 4 - (2,3,4) fault, replacement
• access 5 - (3,4,5) fault, replacement

– 10 page faults

8CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

LRU Example (4 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1) fault
• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (1,2,3,4) fault, replacement
• access 1 - (2,3,4,1)

• access 2 - (3,4,1,2)

• access 5 - (4,1,2,5) fault, replacement
• access 1- (4,2,5,1)

• access 2 - (4,5,1,2)

• access 3 - (5,1,2,3) fault, replacement
• access 4 - (1,2,3,4) fault, replacement

• access 5 - (2,3,4,5) fault, replacement

– 8 faults

9CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

FIFO Example (4 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
• access 1 - (1) fault

• access 2 - (1,2) fault
• access 3- (1,2,3) fault

• access 4 - (1,2,3,4) fault, replacement

• access 1 - (1,2,3,4)
• access 2 - (1,2,3,4)

• access 5 - (2,3,4,5) fault, replacement

• access 1- (3,4,5,1) fault, replacement
• access 2 - (4,5,1,2) fault, replacement

• access 3 - (5,1,2,3) fault, replacement

• access 4 - (1,2,3,4) fault, replacement
• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults

10CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Thrashing

● Virtual memory is not “free”
– can allocate so much virtual memory that the system spends

all its time getting pages
– the situation is called thrashing
– need to select one or more processes to swap out

● Swapping
– write all of the memory of a process out to disk
– don’t run the process for a period of time
– part of medium term scheduling

● How do we know when we are thrashing?
– check CPU utilization?
– check paging rate?
– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing

11CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Working Sets and Page Replacement

● Programs usually display reference locality
– temporal locality

• repeated access to the same memory location
– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference
• sequence of nested storage media

● Working set
– set of pages referenced in the last delta references

Small
Very Fast

Lar ge
Very Slow

Working Set Size

12CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Preventing Threashing

● Need to ensure that we can keep the working set in
memory
– if the working sets of the processes in memory exceed total

page frames, then we need to swap a process out

● How do we compute the working set?
– can approximate it using a reference bit

13CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Implementation Issues

● How big should a page be?
– want to trade cost of fault vs. fragmentation

• cost of fault is: trap + seek + latency + transfer
– Does the OS page size have to equal the HW page size?

• no, just needs to be a multiple of it

● How does I/O relate to paging
– if we request I/O for a process, need to lock the page

• if not, the I/O device can overwrite the page

● Can the kernel be paged?
– most of it can be.
– what about the code for the page fault handler?

14CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

Segmentation

● Segmentation is used to give each program several
independent protected address spaces
– each segment is an independent protected address space
– access to segments is controlled by data which describes

size, privilege level required to access, protection (whether
segment is read-only etc)

– segments may or may not overlap
• disjoint segments can be used to protect against

programming errors
• separate code, data stack segments

15CMSC 412 - S96 (lect 13) copyright 1996 Jeffrey K. Hollingsworth

– Disjoint Segments can be used to exploit expanded address
space

• In 16 bit architectures e.g. (8086 and 80x86 in V86
mode) each segment has only 16 bits of address space

• In distributed networks consisting of multiple 32 bit
machines, segmentation can be used to support single
huge address space

– Segments can span identical regions of address space - flat
model

• Windows NT and Windows ‘95 use 4 Gbyte code
segments, stack segments, data segments

