
1CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Announcements

● Reading 7 (7.5-7.9)
● Midterm #1 is March 5 in class

– covers material through and including lecture 09
• problems at the end of the chapters
• synchronization problems
• questions about the project

– Suggestions for study

● Reader-writers example from last time
– the Z semaphore appears not to be needed

2CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Deadlock Avoidance

● Require additional information about how
resources are to be requested - decide to
approve or disapprove requests on the fly

● Assume that each process lets us know its
maximum resource request

● Safe state:
– system can allocate resources to each process

(up to its maximum) in some order and still avoid a
deadlock

– A system is in a safe state if there exists a safe
sequence

3CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Safe Sequence

● Sequence of processes <P1, .. Pn> is a safe
sequence if for each Pi, the resources that Pi can
request can be satisfied by the currently available
resources plus the resources held by all Pj, j<i

● If the necessary resources are not immediately
available, Pi can always wait until all Pj, j<i have
completed

4CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Banker’s Algorithm
● Each process must declare the maximum number of

instances of each resource type it may need
● Maximum cannot exceed resources available to

system

● Variables: (n is the number of processes, m is
the number of resource types)
– Available - vector of length m indicating the number of

available resources of each type
– Max - n by m matrix defining the maximum demand of each

process
– Allocation - n by m matrix defining number of resources of

each type currently allocated to each process
– Need: n by m matrix indicating remaining resource needs of

each process

5CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

● Work is a vector of length m (resources)
● Finish is a vector of length n (processes)
1. Work = Available; Finish = false
2. Find an i such that Finish[i] = false and Needi <=

Work if no such i, go to 4
3. Work += Allocationi; Finish[i] = true; goto step 2
4. If Finish[i] = true for all i, system is in a safe state

Note this requires m x n2 steps

all elements
in the vector
are <=

6CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Banker’s Algorithm - Example

Alloc Max Avail Need

A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

Three resources: A, B, C (10, 5, 7 instances each)

Consider the snapshot of the system at this time Max - alloc

System is in a safe state, since the sequence <P1, P3, P4, P2, P0> satisfy the
safety criteria.

7CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Resource Request Algorithm
(1) If Requesti <= Needi then goto 3

– otherwise - the process has exceeded its maximum claim

(2) If Requesti <= Available then goto 3
– otherwise process must wait since resources are not

available

(3) Check request by having the system pretend
that it has allocated the resources by
modifying the state as follows:
– Available =Available - Requesti
– Allocation = Allocation + Requesti
– Needi = Needi - Requesti

● Find out if resulting resource allocation state
is safe, otherwise the request must wait.

8CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Deadlock Detection

● Resource Allocation Graph
– Graph consists of vertices

• type P = {P1,..,Pn} represent processes
• type R = {R1,..,Rn} represent resources

– Directed edge from process Pi to resource type Rj signifies
that a process i has requested resource type j

– request edge
– A directed edge from Rj to Pi indicates that resource Rj has

been allocated to process Pi

– assignment edge

9CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

● Resource types may have more than one instance
● Each resource vertex represents a resource type.
● Each resource instance is of a unique resource type,

each resource instance is represented by a
“subvertex” associated with a resource vertex
– (Silverschatz represents resource vertices by squares,

resource instance “subvertices” by dots in the square.
Process vertices are represented by circles)

● A request edge points to a resource vertex
● An assignment edge points from a resource

“subvertex” to a process vertex

Deadlock Detection (cont.)

10CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Resource Allocation Graph

● When a process Pi requests an instance of
resource type Rj, a request edge is inserted
into the resource allocation graph

● When the request can be fulfilled, the request
edge is transformed into an assignment edge

● When the process is done using the resource,
the assignment edge is deleted

● If the graph contains no cycles, no deadlock
can exist

11CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Deadlock!

.

.P1 P2

R1

R2

12CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Deadlock??

R1

.

. .P1

P2

R2

P3

13CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

No!!

P2

P3

P3 could finish with
its instance of R1, release
the instance, then P2
would claim that
instance of R1

.

. .P1

R2

R1

14CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

.

. .P1

R2

R1

Then, P2 could
finish with its instances
of R1 and R2 and
release these resources.
P1 then gets what it wants

P3

 P2

15CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Detecting Deadlock
● Work is a vector of length m (resources)
● Finish is a vector of length n (processes)
● Allocation is an n x m matrix indicating the number of

each resource type held by each process
● Request is an m x n matrix indicating the number of

additional resources requested by each process
1. Work = Available;

if Allocation[i] != 0 Finish = false else Finish = true;
2. Find an i such that Finish[i] = false and Requesti <=

Work if no such i, go to 4
3. Work += Allocation ; Finish[i] = true; goto step 2
4. If Finish[i] = false for some i, system is in deadlock
Note: this requires m x n 2 steps

16CMSC 412 - S96 (lect 09) copyright 1996 Jeffrey K. Hollingsworth

Recovery from deadlock

● Must free up resources by some means
● Process termination

– kill all deadlocked processes
– select one process and kill it

• must re-run deadlock detection algorithm again to see if
it is freed.

● Resource Preemption
– select a process, resource and de-allocate it
– rollback the process

• needs to be reset the process to a safe state
• this requires additional state

– starvation
• what prevents a process from never finishing?

