
1CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Announcements

● Reading chapter 6 (6.7) and chapter 7 (7.1-7.4)
● Midterm #1 is March 5 in class
● Late Policy for programs

– no late work will be accepted
– illness and family emergency will be considered on a case

by case basis

2CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Implementing Semaphores
● declaration

type semaphore = record
 value: integer;
 L: list of process;
end;

● P(S): S.value = S.value -1
if S.value <= 0 then {

add this process to S.L
block;

};

● V(S): S.value = S.value+1
if S.value > 0 then {

remove process P from S.L
wakeup(P);

}

3CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Readers/Writers Problem

● Data area shared by processors
● Some processors read data, other processors can

read or write data
– Any number of readers my simultaneously read the data
– Only one writer at a time may write
– If a writer is writing to the file, no reader may read it

● Two of the possible approaches
– readers have priority or writers have priority

4CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Readers have Priority
reader()
{
 repeat

P(x);
readcount = readcount + 1;
if readcount = 1 then P (wsem);

V(x);
READUNIT;
P(x);

readcount = readcount - 1;
if readcount = 0 V(wsem);

V(x);
 forever
};

writer()
{

repeat
P(wsem);
WRITEUNIT;
V(wsem)

forever
}

5CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Comments on Reader Priority

● semaphores x,wsem are initialized to 1
● note that readers have priority - a writer can gain

access to the data only if there are no readers (i.e.
when readcount is zero, signal(wsem) executes)

● possibility of starvation - writers may never gain
access to data

6CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Writers Have Priority
reader
repeat

P(z);
P(rsem);
P(x);

readcount++;
if (readcount == 1) then
 P(wsem);

V(x);
V(rsem);

V(z);
readunit;
P(x);

readcount- -;
if readcount == 0 then
 V (wsem)

V(x)
forever

writer
repeat

P(y);
writecount++:
if writecount == 1 then
 P(rsem);

V(y);
P(wsem);
writeunit
V(wsem);
P(y);

writecount--;
if (writecount == 0) then
 V(rsem);

V(y);
forever;

7CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Notes on readers/writers with writers
getting priority

P(z);
P(rsem);
P(x);

readcount++;
if (readcount==1) then
 P(wsem);

V(x);
V(rsem);

V(z);

readers queue up on semaphore
z; this way only a single reader
queues on rsem. When a writer
signals rsem, only a single
reader is allowed through

Semaphores x,y,z,wsem,rsem are initialized to 1

8CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Deadlocks

● System contains finite set of resources
– memory space
– printer
– tape
– file
– access to non-reentrant code

● Process requests resource before using it,
must release resource after use

● Process is in a deadlock state when every
process in the set is waiting for an event that
can be caused only by another process in the
set

9CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Formal Deadlocks

● 4 necessary deadlock conditions:
– Mutual exclusion - at least one resource must be

held in a non-sharable mode, that is, only a single
process at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource is
released

– Hold and wait - There must exist a process that is
holding at least one resource and is waiting to
acquire additional resources that are currently held
by other processors

10CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Formal Deadlocks

– No preemption: Resources cannot be preempted;
a resource can be released only voluntarily by the
process holding it, after that process has
completed its task

– Circular wait: There must exist a set {P0,...,Pn} of
waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a
resource held by P2 etc.

● Note that these are not sufficient conditions

11CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Deadlock Prevention

● Ensure that one (or more) of the necessary
conditions for deadlock do not hold

● Hold and wait
– guarantee that when a process requests a

resource, it does not hold any other resources
– Each process could be allocated all needed

resources before beginning execution
– Alternately, process might only be allowed to wait

for a new resource when it is not currently holding
any resource

12CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Deadlock Prevention

● Mutual exclusion
– Sharable resources do not require mutually

exclusive access and cannot be involved in a
deadlock.

● Circular wait
– Impose a total ordering on all resource types and make sure

that each process claims all resources in increasing order of
resource type enumeration

● No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

13CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Deadlock Avoidance

● Require additional information about how
resources are to be requested - decide to
approve or disapprove requests on the fly

● Assume that each process lets us know its
maximum resource request

● Safe state:
– system can allocate resources to each process

(up to its maximum) in some order and still avoid a
deadlock

– A system is in a safe state if there exists a safe
sequence

14CMSC 412 - S96 (lect 08) copyright 1996 Jeffrey K. Hollingsworth

Safe Sequence

● Sequence of processes <P1, .. Pn> is a safe
sequence if for each Pi, the resources that Pi can
request can be satisfied by the currently available
resources plus the resources held by all Pj, j<i

● If the necessary resources are not immediately
available, Pi can always wait until all Pj, j<i have
completed

