
1CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Announcements

● Reading chapter 6 (6.4 and 6.5)
● Midterm #1 is March 5 in class
● Late Policy for programs

– no late work will be accepted
– illness and family emergency will be considered on a case

by case basis

2CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Critical Section (cont)

● May assume that some instructions are atomic
– typically load, store, and test word instructions

● Algorithm #1 for two processes
– use a shared variable that is either 0 or 1
– when Pk = k a process may enter the region

repeat
 (while turn != 0);
 // critical section
 turn = 1;
 // non-critical section
until false;

repeat
 (while turn != 1);
 // critical section
 turn = 0;
 // non-critical section
until false;

– this fails the progress requirement since process 0 not being
in the critical section stops process 1.

3CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Critical Section (Algorithm 2)
● Keep an array of flags indicating which processes

want to enter the section
bool flag[2];

repeat
 flag[i] = true;
 while (flag[j]);

 // critical section

 flag[i] = false;

 // non-critical section
until false;

● This does NOT work either!
– possible to have both flags set to 1

Both processes
could be here at
the same time

4CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Critical Section (Algorithm 3)

● Combine 1 & 2

bool flag[2];
int turn;

repeat
 flag[i] = true;
 turn = j;
 while (flag[j]&& turn ==j);

 // critical section

 flag[i] = false;

 // non-critical section
until false;

● This one does work! Why?

5CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Critical Section (many processes)

● What if we have several processes?
● One option is the Bakery algorithm
bool choosing[n];
integer number[n];

choosing[i] = true;
number[i] = max(number[0],..number[n-1])+1;
choosing[i] = false;
for j = 0 to n-1

while choosing[j];
while number[j] != 0 and ((number[j], j) < number[i],i);

end
// critical section
number[i] = 0

6CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Bakery Algorithm - explained

● When a process wants to enter critical section, it
takes a number
– however, assigning a unique number to each process is not

possible
• it requires a critical section!

– however, to break ties we can used the lowest numbered
process id

● Each process waits until its number is the highest
one
– it can then enter the critical section

● provides fairness since each process is served in the
order they requested the critical section

7CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Synchronization Hardware
● If it’s hard to do synchronization in software, why not

do it in hardware?
● Disable Interrupts

– works, but is not a great idea since important events may be
lost.

– doesn’t generalize to multi-processors

● test-and-set instruction
– one atomic operation

• executes without being interrupted
– operates on one bit of memory
– returns the previous value and sets the bit to one

● swap instruction
– one atomic operation
– swap(a,b) puts the old value of b into a and of a into b

8CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Using Test and Test for Mutual Exclusion
repeat

while test-and-set(lock);
// critical section
lock = false;
// non-critical section

until false;

● bounded waiting time version
repeat

waiting[i] = true;
key = true;
while waiting[i] and key

key = test-and-set(lock);
waiting[i] = false;
// critical section
j = (i + 1) % n
while (j != i) and (!waiting[j])

j = (j + 1) % n;
if (j == i)

lock = false;
else

waiting[j] = false;
// non-critical section

until false;

Note: no priority based on wait time

no process waiting

release process j

look for a waiting process

wait until released or no one busy

9CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Semaphores

● getting critical section problem correct is difficult
– harder to generalize to other synchronization problems
– Alternative is semaphores

● semaphores
– integer variable
– only access is through atomic operations

● P (or wait)
while s <= 0;
s = s - 1;

● V (or signal)
s = s + 1

10CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Using Semaphores
● critical section

repeat

P(mutex);
// critical section

V(mutex);

// non-critical section
until false;

● Require that Process 2 begin statement S2 after
Process 1 has completed statement S1:
Process 2

S1

V(synch)

Process 1

P(synch)

S2

11CMSC 412 - S96 (lect 07) copyright 1996 Jeffrey K. Hollingsworth

Implementing semaphores

● Busy waiting implementations
● Instead of busy waiting, process can block itself

– place process into queue associated with semaphore
– state of process switched to waiting state
– transfer control to CPU scheduler
– process gets restarted when some other process executes a

signal operations

