
1CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Announcements

● Program #2 handouts were provided
● Reading chapter 6 (6.3))

2CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Producer-consumer pair

● producer creates data and sends it to the consumer
● consumer read the data and uses it
● examples: compiler and assembler can be used as a

producer consumer pair
● Buffering

– processes may not produce and consume items one by one
– need a place to store produced items for the consumer

• called a buffer
– could be fixed size (bounded buffer) or unlimited (un-

bounded buffer)

3CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Message Passing
● What happens when a message is sent?

– sender blocks waiting for receiver to receive
– sender blocks until the OS has a copy of the message
– sender blocks until the receiver responds to the message

• sort of like a procedure call
• could be expanded to provide a remote procedure call

(RPC) system.

● Error cases
– a process terminates:

• receiver could wait forever
• sender could wait or continue (depending on semantics)

– a message is lost in transit
• who detects this? could be OS or the applications

● Special case: if two messages are buffered, drop the
older one
– useful for real-time info systems

4CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Signals (UNIX)

● provide a way to convey one bit of information
between two processes (or OS and a process)

● types of signals:
– change in the system: window size
– time has elapsed: alarms
– error events: segmentation fault
– I/O events: data ready

● are like interrupts
– a processes is stopped and a special handler function is

called

● a fixed set of signals is normally available

5CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Producer-consumer: shared memory

● Consider the following code for a producer
repeat

….
produce an item into nextp
…
while counter == n;
buffer[in] = nextp;
in = (in+) % n;
counter++;

until false;

● Now consider the consumer
repeat

while counter == 0;
nextc = buffer[out];
out = (out + 1) % n;
counter--;
consume the item in nextc

until false;

● Does it work? Answer: NO!

6CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Problems with the Producer-Consumer
Shared Memory Solution

● Consider the three address code for the counter
Counter Increment Counter Decrement
reg1 = counter reg2 = counter
reg1 = reg1 + 1 reg2 = reg2 - 1
counter = reg1 counter = reg2

● Now consider an ordering of these instructions
T0 producer reg1 = counter { reg1 = 5 }
T1 producer reg1 = reg1 + 1 { reg1 = 6 }
T2 consumer reg2 = counter { reg2 = 5 }
T3 consumer reg2 = reg2 - 1 { reg2 = 4 }
T4 producer counter = reg1 { counter = 6 }
T5 consumer counter = reg2 { counter = 4 }

This
should
be 5!

7CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Defintion of terms

● Race Condition
– Where the order of execution of instructions influences the

result produced
– Important cases for race detection are shared objects

• counters: in the last example
• queues: in your project

● Mutual exclusion
– only one process at a time can be updating shared objects

● Critical section
– region of code that updates or uses shared data

• to provide a consistent view of objects need to make
sure an update is not in progress when reading the data

– need to provide mutual exclusion for a critical section

8CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Critical Section Problem

● processes must
– request permission to enter the region
– notify when leaving the region

● protocol needs to
– provide mutual exclusion

• only one process at a time in the critical section
– ensure progress

• no process outside a critical section may block another
process

– guarantee bounded waiting time
• limited number of times other processes can enter the

critical section while another process is waiting
– not depend on number or speed of CPUs

• or other hardware resources

9CMSC 412 - S96 (lect 06) copyright 1996 Jeffrey K. Hollingsworth

Critical Section (cont)

● May assume that some instructions are atomic
– typically load, store, and test word instructions

● Algorithm #1 for two processes
– use a shared variable that is either 0 or 1
– when Pk = k a process may enter the region

repeat
 (while turn != 0);
 // critical section
 turn = 1;
 // non-critical section
until false;

repeat
 (while turn != 1);
 // critical section
 turn = 0;
 // non-critical section
until false;

– this fails the progress requirement since process 0 not being
in the critical section stops process 1.

