
CMSC 412 Project #3
Threads & Synchronization

Due March 17
th

, 2017, at 5:00pm

Overview

User level threads. You will implement user level threads where each thread has it’s own stack, but

shares the program, globals, and heap data with its peers.

Synchronization Implementation. You will implement semaphores, a simple synchronization

primitive. In addition, you will implement a user-level synchronization primitive based on busy waiting

with semaphores.

Threads

You will add one new system call that provides the ability to clone a process into another running thread.

The system call will be:

int Clone(void (*threadFunc)(void), void *childStack)

The first argument to the function is a function that is to be invoked when the new thread is started. The

function takes no parameters. This function should call Exit to terminate the thread, if it returns the

behavior is undefined. The second parameter is a pointer to the stack for the new user thread. The stack

is typically a malloc’d space in a threading environment. However, since the user level code for

GeekOS lacks a heap at this point, you should pass in a pointer intro a global array to use as the stack.

Recall that stacks grow downward in memory on x86 processors and that references to C array start with

the lowest element in memory. These two facts mean you will need to pass in the end of your global

array to the Clone system call. The return value for Clone is pid of the newly created thread.

Only original processes may call clone. Calling clone from a cloned thread should return EINVALID.

Implementing Clone will require allocating a kernel stack, copying the parent’s kthread structure and

changing the appropriate fields. It will also require calling Attach_User_Context, adding the

newly created thread to the list of all threads via Add_To_Back_Of_All_Thread_List and

finally making it runnable by calling Make_Runnable. The cloned process should have its own

kthread struct, but share the user context with its parent.

To get the newly created thread to run the correct user code on the correct stack, you will need to

“fixup” the copied kernel stack so that the pushed interrupt (the one the parent user to make the system

call Clone) returns back into the first instruction of the supplied main function for the cloned thread.

User Stack Data Selector (data selector)
User Stack Location

User Stack Pointer (to end of user's data segment)

Eflags

Interrupt_State

Text Selector (code selector)

Program Counter (entry addr)

Error Code (0)

Interrupt Number (0)

EAX (0)

EBX (0)

ECX (0)

EDX (0)

ESI (Argument Block address)

EDI (0)

EBP (0)

DS (data selector)

ES (data selector)

FS (data selector)

GS (data selector)

Semaphores

You will add system calls that provide user programs with semaphores, to enable thread synchronization

among different threads. The system calls (on the user side) will be:

int Open_Semaphore(const char *name, int ival)

int P(int sem)

int V(int sem)

int Close_Semaphore(int sem)

Open_Semaphore

Open_Semaphore(name, ival) is a request by the current process to use a semaphore. The user gives a

name for the semaphore, as well as the semaphore’s initial value, and will get back a semaphore ID, an

integer between 0 and N - 1. The semaphore ID denotes a particular semaphore data structure in the

kernel, which you must implement. The semaphore ID is then passed by the user program to the

operations P() and V(), described next, to wait or signal the associated semaphore.

Your operating system should be able to handle at least 20 (thus N = 20) semaphores whose names may

be up to 25 characters long. If there are no semaphores left (i.e., there were N semaphores with unique

names already given), ENOSPACE must be returned indicating an error.

The returned semaphore ID is chosen in one of two ways.

1. If this is the first time Open_Semaphore has been called for the given name, the kernel should

find and return an unused SID, and initialize the value of the associated semaphore datastructure

to ival.

2. If another thread has made this system call with the same name, and the semaphore has not been

destroyed in the meantime (see below), you must return back the same semaphore ID (sem) that

was returned the first time. The parameter ival is ignored in this case.

Think of a semaphore ID as like a file descriptor in UNIX: in that case, when you open a file, you get

back a number (the file descriptor) that denotes that file. Subsequent read and write operations take that

file descriptor as an argument, and the kernel figures out which file the number is associated with, and

then performs the operations on that file. Just the same way, you will implement a semaphore

datastructures within the kernel, and refer to them from user programs via their associated semaphore

IDs. However, one difference is that file descriptor numbers are re-used for different processes, but

semaphore ID’s are globally unique.

P and V

The P(sem) system call is used to decrement the value of the semaphore associated with sempahore ID

sem. This operation is referred to as wait() in the text. Similarly, the V(sem) system call is used to

increment (signal() in the text) the value of the semaphore associated with sem.

As you know, when P() is invoked using a semaphore ID whose associated semaphore's count is less

than or equal to 0, the invoking process should block. To block a thread, you can use the Wait function

in the kernel. Each semaphore data structure will contain a thread queue for its blocked threads. The file

kthread.h provides a definition of a thread queue. You should look at kthread.h and kthread.c to

see how it is declared and used. To wake up a thread/all threads waiting on a given semaphore, i.e.

because of a V(), you can use Wake_Up_One()/Wake_Up() routines from kthread.h.

A process may only legally invoke P(sem) or V(sem) if sem was returned by a call to Open_Semaphore

for that process (and the semaphore has not been subsequently destroyed). If this is not the case, these

routines should return EINVALID.

Close_Semaphore

Close_Semaphore(sem) should be called when a process is done using a semaphore; subsequent calls to

P(sem) and V(sem) (and additional calls to Close_Semaphore(sem) by this process) will return

EINVALID.

Once all processes using the semaphore associated with a given semaphore ID have called

Close_Semaphore, the kernel datastructure for that semaphore can be destroyed. A simple way to keep

track of when this should happen is to use a reference count. In particular, each semaphore datastructure

can contain a count field, and each time a new process calls Open_Semaphore, the count is

incremented. When Close_Semaphore is called, the count is decremented. When the count reaches 0,

the semaphore can be destroyed.

When a thread exits, the kernel should close any semaphores that the thread still has open. In your code,

both the Sys_Close_Semaphore() function and at least some function involved in terminating user

threads should be able to invoke the "real" semaphore-closing function.

Spin Locks

On multi-core systems, often times semaphores (which require going into the kernel and blocking

processes) are too slow. As a result, in parallel programs often time “spin” locks are used. A spin lock

checks a shared memory location to see if another thread is currently using the lock. If no other thread

is using it, the lock function marks the lock as in use. If there is another thread holding the lock, it keeps

trying to see if the lock is free (i.e., it spins).

In this project, you will implement spin lock primitives. The functions are:

int Is_Locked(User_Spin_Lock_t *lock)

 Returns 1 is the spin lock is locked and 0 otherwise

void Spin_Lock_Init(User_Spin_Lock_t *lock)

 initializes the spin lock data structure

void Spin_Lock(User_Spin_Lock_t *lock)

 Locks a spin lock. If another thread has the lock, busy wait until it is available.

int Spin_Unlock(User_Spin_Lock_t *lock)

Unlock a spin lock. Returns -1 if the lock is not currently held, and 0 if the is successfully

unlocked.

Since spin locks are implemented entirely in user space, the code should be added to the C library

(src/libc) in a new function called spin.c. To correctly implement the spin locks, you will need to write

at least part of these routines in assembly code and use the atomic memory operations. The atomic swap

instruction on x86 looks like “lock xchg eax, [ebx]” where eax is a register value to atomically swap

into the memory location pointed to by ebx. Look in the file spin.c at the supplied code for Spin_Lock

to see how to get a C variable into a specific register.

The following two references provide a good introduction to using inline assembly with the GNU

compiler:

 http://wiki.osdev.org/Inline_Assembly

 http://ericw.ca/notes/a-tiny-guide-to-gcc-inline-assembly.html

You should write test code for the spin lock using the clone function (described above) to create two

threads with shared memory between them.

Notes

In order not to clutter syscall.c with too much functionality, you must put your semaphore

implementation in two new files sem.h and sem.c. Semaphore operations need to be implemented

within a critical section, so that operations execute atomically.

In this, and other projects, you will rely heavily upon a list data structure. For this reason an

implementation has been provided to you in list.h file. Please familiarize yourself with its syntax and

functionality. It could be a little tricky to understand the syntax since functions are written using

#define. Naturally you are always free to extend, modify, or write your own implementation that would

better suit your needs.

The wait system call should work with cloned threads. A background process can clone and wait for its

child (just like a background process can fork a child that is in the foreground).

Summary: New System Calls

Kernel Function User Function Effect
Sys_Clone Int Clone(

 void(*threadFunc(void),

 void *childStack)

A new thread is created in the parent’s address

space and starting running threadFunc on stack

childStack.

Sys_Open_Semaphore int Open_Semaphore(

 const char *name,

 int ival)

if name is longer than 25 characters, return

ENAMETOOLONG. If a semaphore with this

name doesn't exist, create it and return its SID;

if it exists, return its SID; note that SID must

be >= 0

Sys_P int P(int sem) might block (textbook wait() semantics)

returns EINVALID if sem invalid returns 0

on success

Sys_V int V(int sem) never blocks (textbook signal() semantics)

returns EINVALID if sem invalid returns 0

on success

Sys_Close_Semaphore int Close_Semaphore(

 int sem)
never blocks returns EINVALID if sem

invalid returns 0 on success

Testing your code

The files we provided can be used to test your semaphores:

• sem-ping.c and sem-pong.c create a nice effect when you launch them concurrently:

% /c/sem-ping.exe &
% /c/sem-pong.exe

Final Notes

We do not require that your earlier projects worked; you should be able to implement this project

directly from the base kernel, without using the earlier kernel features.

