
1CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Announcements

� Project #6 is due Thursday at 5:00 PM

� Course Evaluations

– Please fill them out!

� Final is Sat 8:00 – 10:00 am

– This room

� Extra Office hours

– W 1:30-2:30

2CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Ethernet

� 10 Mbps (to 100 Gbps)

� mili-second latency

� limited to several kilometers in distance

� variable sized units of transmission

� Conceptually a bus based protocol

– requests to use the network can collide

� addresses are 48 bits

– unique to each interface

Computer Computer

3CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Switched Ethernet

� Logically it is still a bus

� Physically, it is a star configuration
– the hub is at the center of the network

� Switches provide:
– better control of hosts

• possible to restrict traffic to only the desired target

• can shutdown a host’s connection at the hub if its
Ethernet device is misbehaving

– easier wiring

• can use twisted pair wiring

� 100 Mbps/1Gbps Ethernet
– is only available with switches

� 10Gbps Ethernet
– Requires cat-6 (to 100 feet) or cat-7 wiring (to 100 meters)

4CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Ethernet Collisions

� If one host is sending, other hosts must wait

– called Carrier Sense with Multiple Access (CSMA)

� Possible for two hosts to try to send at once

– each host can detect this event (cd- Collision Detection)

– both hosts must re-send information

• if they both try immediately, will collide again

• instead each waits a random interval then tries again

� Only provides statistical guarantee of transmission

– however, the probability of success if higher than the
probability of hardware failures and other events

5CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

My Research Interests

� Parallel Computing

– There are limits to how fast one processor can run

– solution: use more than one processor

� Issues in parallel computing design

– do the processors share memory?

• is the memory “uniform”?

• how do processors cache memory?

– if not how do they communicate?

• message passing

• what is the latency of message passing

6CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Parallel Processing

� What happens in parallel?

� Several different processing steps

– pipeline

– simple example: grep foo | sort > out

– called: multiple instruction multiple data (MIMD)

� The same operation

– every processor runs the same instruction (or no-instruction)

– called: single instruction multiple data (SIMD)

– good for image processing

� The same program

– every processor runs the same program, but not “lock step”

– called: single program multiple data (SPMD)

– most common model

7CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Issues in effective Parallel Computation

� Getting enough parallelism
– Limited by what is left serial

– Even 10% serial limited to a speedup of 10x even with infinite
numbers of processors

� Load balancing
– every processor should to have some work to do.

� Latency hiding/avoidance
– getting data from other processors (or other disks) is slow

– need to either:

• hide the latency

– processes can “pre-fetch” data before they need it

– block and do something else while waiting

• avoid the latency

– use local memory (or cache)

– use local disk (of file buffer cache)

� Limit communication bandwidth
– use local data

– use “near” data (i.e. neighbors)

8CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

My Research:

� Given a parallel program and a machine

� Try to answer performance related questions

– Why is the programming running so slowly?

– How do I fix it?

� Issues:

– how to measure a program without changing it?

– how do you find (and then present) the performance
problem, not tons of statistics?

� Techniques:

– dynamic data collection

– automated search

– analysis of process interactions

9CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Large Scale Computing

� Today (5/2017)

– 44 systems with more than 128k processors

– More than 429 systems >= 16k processors

– World’s fastest computer (Sunway TaihuLight in China)

• 10,649,600 cores

• Uses 15.37 MW of electricity

• Smallest core count of top500 – 5,904

10CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

� Auto-tuning: key Idea:
– Automated cycle of: measure and actuate change

– As program runs, it (hopefully) gets faster

� Why:
– Many parameters impact performance

– Optimal performance for a given system depends on:

• Details of the processor

• Details of the inputs (workload)

• Which nodes are assigned to the program

• Other things running on the system

– Tuning these parameters by hand is tedious and slow

Improving Code by Running It

11CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Auto-tuning Motivation

� Example, a dense matrix multiple kernel

� Various Options:

– Original program: 30.1 sec

– Hand Tuned (by developer): 11.4 sec

– Auto-tuned of hand-tuned: 15.9 sec

– Auto-tuned original program: 8.5 sec

� What Happened?

– Hand tuning prevented analysis

• Auto-tuned transformations were then not possible

12CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

What is online auto-tuning?

� Extreme late binding of decisions about:

– Compiler optimizations

– Algorithms

– Library parameters

– Applications parameters

– Hardware?

� Reacting to a changing world

– Hardware problems

– Properties of data sets

� Changing anything at runtime that

– Changes performance

– Doesn’t not change answer (output)

13CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Example: Auto-tunable FFT Libraries

13

� Works on a 3-D Array of Complex Numbers
– Parallelization via a 2-D decomposition to increase scaling.

� 24 Parameters
– Two communication tile sizes

– Two communication window sizes

– Eight MPI_Test() frequencies

– Eight sub-tile sizes

– …

� Why Auto-Tuning?
– 10X performance variance

– A huge # possible configurations

– Various system environments

10X

14CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Speedup of NEW over Other Methods

14

1.83x over FFTW1.58x over DCMP

1.32x over UPCF

15CMSC 412 – S17 (lect 25) copyright 2004-2017 Jeffrey K. Hollingsworth

Strong Scaling

15

� N3 = 10243, p = 128 – 32768

