


# Security

#### security vs. protection

- protection provides a mechanism to control access to resources
- security also includes external features such as users
- security requires precluding unauthorized
  - access to data
  - modification of data
  - destruction of data
- several major types of security
  - physical: must protect access to resource it self
    - if you have physical access to a machine, you can break security.
  - users: if a user gives away access (or info) computer security if useless
  - software: OS and system software must provide protection

## Who do you trust?

- It's easy to get paranoid
- Do I trust a login prompt?
- Do I trust the OS that I got from the vendor?
- Do I trust the system staff?
  - should I encrypt all my files?
- Networking
  - do you trust the network provider?
  - do you trust the phone company?
- How do you bootstrap security?
  - always need one "out of band" transfer to get going

## **Computer Threat Model**

- must consider acceptable risks
  - value of item to be protected
  - \$2,000 of computer time to steal 50 cents of data
    - this is a sufficient deter someone
    - but computers keep getting faster
- Basic Ideas:
  - confine access to only the highest level needed
    - run programs as root only if needed
    - don't give system access to all users

# Authentication

- How does the computer know who is using it?
  - need to exchange some information to verify the user
  - types of information exchanged:
    - pins
      - numeric passwords
      - too short to be secure in most cases
    - passwords
      - a string of letters and numbers
      - often easy to guess
    - challenge/response pairs
      - user needs to be apply to apply a specific algorithm
      - often involve use of a calculator like device
      - can be combined with passwords
    - unique attributes of the person
      - i.e. signature, thumb print, DNA?
      - sometimes these features can change during life

# Authentication (cont.)

- How does a user know what computer they are using?
- Need to have *mutual authentication* 
  - computer presents some information that only it could contain
  - example: Windows <ctrl>-<alt>-<del> to login
    - user software can't trap that information
    - assumes that the kernel itself is secure

#### • telephone example:

- never give banking/credit card info over the phone unless you placed the phone call
  - · i.e. you use the telco namespace for authentication

### • ATM example:

- How do you know you are putting your card into a valid ATM?

# Example (UNIX passwords)

#### • use a function that is hard to invert

- "easy" to compute f(x) given x
- hard to compute x given f(x)
- the function used is a variation on the DES, MD5 SHA1 algorithms
  - changes selected items in the transformation matrix to prevent hardware attacks
- store only f(x) in the filesystem

• to login:

- user supplies a password x'
- compute f(x') and compare to f(x)

#### • salt

- add an extra two characters to x so that the same x will produce different values on different machines
- need to store salt along with password
- dictionary attach
  - if its to easy to compute f(x)
  - can "guess" many passwords and try them out
  - salt makes this much harder

CMSC 412 – S17 (lect 22)

copyright 2017 Jeffrey K. Hollingsworth

# Types of Software Threats (Malware)

### • Trojan Horse

- a program that looks like a normal program
- for example a login program written by a user
- UNIX example: never put "." early in your path
- Trap door
  - hole left by the programmers to let them into the system
  - "system" password set to a default value by the vendor
- Worms
  - programs that clone themselves and use resources
  - Internet worm:
    - exploited several bugs and "features" in UNIX
      - .rhosts files
      - bug in finger command (overwrite strings)
      - sendmail "debug" mode to run commands

# Viruses

- Most common on systems with little security
  - easy to write to boot blocks, system software
  - never run untrusted software with special privileges
  - Don't perform daily operations with root/system privileges
- Possible to write system independent malware
  - MS Word virus
    - uses macros to call into the OS
  - HTML (javascript)
  - Flash
  - Google Apps Script (javascript)