
1CMSC 412 – S17 (lect 15)

Announcements

� Project #4

– Should have all of the virtual -> mapping working this week

– Should have the user program running from 0x8000 0000 by
early next week

� Reading Chapter 12

2CMSC 412 – S17 (lect 15)

FIFO Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (2,3,4) fault, replacement

• access 1 - (3,4,1) fault, replacement

• access 2 - (4,1,2) fault, replacement

• access 5 - (1,2,5) fault, replacement

• access 1- (1,2,5)

• access 2 - (1,2,5)

• access 3 - (2,5,3) fault, replacement

• access 4 - (5,3,4) fault, replacement

• access 5 - (5,3,4)

– 9 page faults

3CMSC 412 – S17 (lect 15)

FIFO Example (4 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (1,2,3,4) fault, replacement

• access 1 - (1,2,3,4)

• access 2 - (1,2,3,4)

• access 5 - (2,3,4,5) fault, replacement

• access 1- (3,4,5,1) fault, replacement

• access 2 - (4,5,1,2) fault, replacement

• access 3 - (5,1,2,3) fault, replacement

• access 4 - (1,2,3,4) fault, replacement

• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults

4CMSC 412 – S17 (lect 15)

Thrashing

� Virtual memory is not “free”
– can allocate so much virtual memory that the system spends

all its time getting pages

– the situation is called thrashing

– need to select one or more processes to swap out

� Swapping
– write all of the memory of a process out to disk

– don’t run the process for a period of time

– part of medium term scheduling

� How do we know when we are thrashing?
– check CPU utilization?

– check paging rate?

– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing

5CMSC 412 – S17 (lect 15)

Working Sets and Page Replacement

� Programs usually display reference locality

– temporal locality

• repeated access to the same memory location

– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference

• sequence of nested storage media

� Working set

– set of pages referenced in the last delta references

Small

Very Fast
Large

Very Slow

Working Set Size

6CMSC 412 – S17 (lect 15)

Preventing Thrashing

� Need to ensure that we can keep the working set in

memory

– if the working sets of the processes in memory exceed total
page frames, then we need to swap a process out

� How do we compute the working set?

– can approximate it using a reference bit

7CMSC 412 – S17 (lect 15)

Improving Heap Locality

� Malloc (or new) don’t ensure locality among requests

– Two calls to malloc could get memory on different cache
lines, pages, etc.

� Option 1:

– Malloc a large chunk of memory and parcel it out yourself

� Option 2:

– Add a “near” hint parameter to malloc

– Indicates that memory should be allocated near the target
location

• It’s only a performance hint, and malloc can ignore it

• Allows locality improvement without major changes

8CMSC 412 – S17 (lect 15)

Implementation Issues

� How big should a page be?

– want to trade cost of fault vs. fragmentation

• cost of fault is: trap + seek + latency + transfer

– Does the OS page size have to equal the HW page size?

• no, just needs to be a multiple of it

� How does I/O relate to paging

– if we request I/O for a process, need to lock the page

• if not, the I/O device can overwrite the page

� Can the kernel be paged?

– most of it can be.

– what about the code for the page fault handler?

9CMSC 412 – S17 (lect 15)

File Abstraction
� What is a file?

– a named collection of information stored on secondary storage

� Properties of a file

– non-volatile

– can read, write, or update it

– has metadata to describe attributes of the file

� File Attributes

– name: a way to describe the file

– type: some information about what is stored in the file

– location: how to find the file on disk

– size: number of bytes

– protection: access control

• may be different for read, write, execute, append, etc.

– time: access, modification, creation

– version: how many times has the file changed

