
1CMSC 412 – S17 (lect 11)

Announcements

� Project #2 due tonight

� Midterm next Thursday

2CMSC 412 – S17 (lect 11)

What is an Operating System?

� Resource Manager
– Resources include: CPU, memory, disk, network

– OS allocates and de-allocates these resources

� Virtual Machine
– provides an abstraction of a larger (or just different machine)

– Examples:

• Virtual memory - looks like more memory

• Java - pseudo machine that looks like a stack machine

• IBM VM - a complete virtual machine (can boot multiple
copies of an OS on it)

� Multiplexor
– allows sharing of resources and protection

– motivation is cost: consider a $40M supercomputer

3CMSC 412 – S17 (lect 11)

What is an OS (cont)?

� Provider of Services
– includes most of the things in the above definition

– provide “common” subroutines for the programmer

• windowing systems

• memory management

� The software that is always loaded/running
– generally refers to the Os kernel.

• small protected piece of software

� All of these definitions are correct
– but not all operating have all of these features

4CMSC 412 – S17 (lect 11)

System Calls

� Provide the interface between application programs
and the kernel

� Are like procedure calls
– take parameters

– calling routine waits for response

� Permit application programs to access protected
resources

load r0, x
system call 10

User Program Operating System
(kernel)

Code for
sys call 10

register r0

5CMSC 412 – S17 (lect 11)

System Call Mechanism

� Use numbers to indicate what call is made

� Parameters are passed in registers or on the stack

� Why do we use indirection of system call numbers
rather than directly calling a kernel subroutine?

– provides protection since the only routines available are
those that are export

– permits changing the size and location of system call
implementations without having to re-link application
programs

6CMSC 412 – S17 (lect 11)

Policy vs. Mechanism

� Policy - what to do
– users should not be able to read other users files

� Mechanism- how to accomplish the goal
– file protection properties are checked on open system call

� Want to be able to change policy without having to
change mechanism
– change default file protection

� Extreme examples of each:
– micro-kernel OS - all mechanism, no policy

– MACOS - policy and mechanism are bound together

7CMSC 412 – S17 (lect 11)

Processes

� What is a process?
– a program in execution

– “An execution stream in the context of a particular state”

– a piece of code along with all the things the code can affect
or be affected by.

• this is a bit too general. It includes all files and
transitively all other processes

– only one thing happens at a time within a process

� What’s not a process?
– program on a disk - a process is an active object, but a

program is just a file

8CMSC 412 – S17 (lect 11)

Process Creation
� Who creates processes?

– answer: other processes

– operations is called fork (or spawn)

– what about the first process?

� Have a tree of processes

• parent-child relationship between processes

� what resources does the child get?
• new resources from the OS

• a copy of the parent resources

• a subset of the parent resources

� What program does the child run?
• a copy of the parent (UNIX fork)

– a process may change its program (execve call in
UNIX)

• a new program specified at creation (VMS spawn)

9CMSC 412 – S17 (lect 11)

Critical Section Problem
� processes must

– request permission to enter the region

– notify when leaving the region

� protocol needs to

– provide mutual exclusion

• only one process at a time in the critical section

– ensure progress

• no process outside a CS may block another process

– guarantee bounded waiting time

• limited number of times other processes can enter the
critical section while another process is waiting

– not depend on number or speed of CPUs

• or other hardware resources

� May assume that some instructions are atomic
– typically load, store, and test word instructions

10CMSC 412 – S17 (lect 11)

Deadlocks

� System contains finite set of resources
– Process requests resource before using it, must release

resource after use

– Process is in a deadlock state when every process in the set
is waiting for an event that can be caused only by another
process in the set

� 4 necessary deadlock conditions:

– Mutual exclusion - at least one resource must be
held in a non-sharable mode

– Hold and wait

– No preemption

– Circular wait

11CMSC 412 – S17 (lect 11)

Deadlock Prevention
� Ensure that one conditions for deadlock never holds

� Hold and wait

– guarantee that when a process requests a
resource, it does not hold any other resources

– Each process could be allocated all needed
resources before beginning execution

� Mutual exclusion

– Sharable resources

� Circular wait
– make sure that each process claims all resources in

increasing order of resource type enumeration

� No Premption
– virutalize resources and permit them to be prempted. For

example, CPU can be prempted.

12CMSC 412 – S17 (lect 11)

Banker’s Algorithm

� Each process must declare the maximum number of
instances of each resource type it may need

� Maximum cannot exceed resources available to
system

� Variables: (n is the number of processes, m is
the number of resource types)
– Available - vector of length m indicating the number of

available resources of each type

– Max - n by m matrix defining the maximum demand of each
process

– Allocation - n by m matrix defining number of resources of
each type currently allocated to each process

– Need: n by m matrix indicating remaining resource needs of
each process

13CMSC 412 – S17 (lect 11)

Short-term scheduling algorithms
� First-Come, First-Served (FCFS, or FIFO)

– as process becomes ready, join Ready queue, scheduler
always selects process that has been in queue longest

� Round-Robin (RR)
– use preemption, based on clock - time slicing

� Shortest Process Next (SPN)
– non-preemptive

– select process with shortest expected processing time

� Shortest Remaining Time (SRT)

– preemptive version of SPN

– scheduler chooses process with shortest expected
remaining process time

� Priorities

– assign each process a priority, and scheduler always
chooses process of higher priority over one of lower priority

14CMSC 412 – S17 (lect 11)

Synchronization Program

� Have students spend15-20 minutes working on this by
themselves before going over it.

� Given an implementation of general (counting) semaphores,
implement bounded counting semaphores where each
semaphore is declared with initial values, but also a maximum
value. A V operation on a bounded counting semaphore that is
at its maximum value should return immediately and not change
the state of the system.

� P works the same as a general semaphore.

� The API is:
– CreateBoundedSemaphore(int max, int initialValue)

– Pbounded(semaphore s)

– Vbounded(semaphore s)

15CMSC 412 – S17 (lect 11)

Solution

CreateBoundedSemaphore(int max, int initialValue):

Shared int s.max = max

Shared int s.curr = initialValue

Semaphore s.mutex = 1;

Semaphore s.wait = initialValue;

Pbounded(semaphore s):

P(s.mutex)

s.curr—

V(s.mutex)

P(s.wait)

Vbounded(semaphore s)

P(s.mutex)

If (s.curr < s.max)

V(s.wait)

s.curr++ - This should be only if the if is true!

V(s.mutex)

