Announcements

e Midterm is Thursday (3/9/17)
— Covers up through this Th lecture

e Project #2 is due Th at 5:00 PM

CMSC 412 — 817 (lect 10)

Deadlock Avoidance

e Require additional information about how resources
are to be requested - decide to approve or
disapprove requests on the fly

e Assume that each process lets us know its maximum
resource request
e Safe state:

— system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock

— A system is in a safe state if there exists a safe sequence

CMSC 412 —S17 (lect 10)

Safe Sequence

e Sequence of processes <P4, .. P> is a safe
sequence if for each P;, the resources that P, can
request can be satisfied by the currently available
resources plus the resources held by all P;, j<i

e [f the necessary resources are not immediately
available, P; can always wait until all P;, j<i have
completed

CMSC 412 — 817 (lect 10)

Banker’s Algorithm

e Each process must declare the maximum number of

instances of each resource type it may need

e Maximum can’t exceed resources available to system

e Variables:
n is the number of processes
m is the number of resource types

— Available - vector of length m indicating the number of available

resources of each type

— Max - n by m matrix defining the maximum demand of each

process

— Allocation - n by m matrix defining number of resources of each

type currently allocated to each process

— Need: n by m matrix indicating remaining resource needs of

each process
— Work: a vector of length m (resources)

— Finish: a vector of length n (processes)
CMSC 412 —S17 (lect 10)

Safe State Predicate

1. Work = Available; Finish[*] = false all elements
2. Find an i such that Finish[i] = false I ihe vector
and Need][i,*] ork[i,*] if no such i, go to 4
3. Work[i,*] += Allocation[i,*];
Finishl[i] = true;
goto step 2
4. If Finish[i] = true for all i, system is in a safe state

Note this requires m x n? steps

CMSC 412 — 817 (lect 10)

Safe State Predicate - Example

Three resources: A, B, C (10, 5, 7 instances each)

Consider the snapshot of the system at this time pax - alloc

Alloc Max Avail Need

ABC ABC ABC ABC
PO 010 753 332 743
P1 200 322 122
P2 302 902 600
P3 211 222 011
P4 002 433 431

System is in a safe state, since the sequence <P1, P3, P4, P2, PO> satisfy the
safety criteria.

CMSC 412 —S17 (lect 10)

Resource Request Algorithm

(1) If Request; <= Need; then goto 2
— otherwise - the process has exceeded its maximum claim
(2) If Request; <= Available then goto 3
— otherwise process must wait since resources are not available
(3) Check request by having the system pretend that it has
allocated the resources by modifying the state as follows:
— Available = Available - Request,
— Allocation = Allocation + Request;
— Need; = Need, - Request;
e Find out if resulting resource allocation state is safe, otherwise
the request must wait.

CMSC 412 — 817 (lect 10)

Managing Memory

e Main memory is big, but what if we run out
— use virtual memory
— keep part of memory on disk
* bigger than main memory
+ slower than main memory
e Want to have several program in memory at once
— keeps processor busy while one process waits for I/O
— need to protect processes from each other
— have several tasks running at once
» compiler, editor, debugger
+ word processing, spreadsheet, drawing program
e Use virtual addresses
— look like normal addresses
— hardware translates them to physical addresses

CMSC 412 —S17 (lect 10)

Advantages of Virtual Addressing

e Can assign non-contiguous regions of physical
memory to programs
e A program can only gain access to its mapped pages

e Can have more virtual pages than the size of physical
memory
— pages that are not in memory can be stored on disk

e Every program can start at (virtual) address 0

CMSC 412 — 817 (lect 10)

