
1
1

1CMSC 412 – S17 (lect 10)

Announcements

� Midterm is Thursday (3/9/17)

– Covers up through this Th lecture

� Project #2 is due Th at 5:00 PM

2CMSC 412 – S17 (lect 10)

Deadlock Avoidance

� Require additional information about how resources

are to be requested - decide to approve or

disapprove requests on the fly

� Assume that each process lets us know its maximum

resource request

� Safe state:

– system can allocate resources to each process (up to its

maximum) in some order and still avoid a deadlock

– A system is in a safe state if there exists a safe sequence

2
2

3CMSC 412 – S17 (lect 10)

Safe Sequence

� Sequence of processes <P1, .. Pn> is a safe

sequence if for each Pi, the resources that Pi can

request can be satisfied by the currently available

resources plus the resources held by all Pj, j<i

� If the necessary resources are not immediately

available, Pi can always wait until all Pj, j<i have

completed

4CMSC 412 – S17 (lect 10)

Banker’s Algorithm

� Each process must declare the maximum number of
instances of each resource type it may need

� Maximum can’t exceed resources available to system

� Variables:

n is the number of processes

m is the number of resource types
– Available - vector of length m indicating the number of available

resources of each type

– Max - n by m matrix defining the maximum demand of each
process

– Allocation - n by m matrix defining number of resources of each
type currently allocated to each process

– Need: n by m matrix indicating remaining resource needs of
each process

– Work: a vector of length m (resources)

– Finish: a vector of length n (processes)

3
3

5CMSC 412 – S17 (lect 10)

1. Work = Available; Finish[*] = false

2. Find an i such that Finish[i] = false

and Need[i,*] <= Work[i,*] if no such i, go to 4

3. Work[i,*] += Allocation[i,*];

Finish[i] = true;

goto step 2

4. If Finish[i] = true for all i, system is in a safe state

Note this requires m x n2 steps

all elements
in the vector
are <=

Safe State Predicate

6CMSC 412 – S17 (lect 10)

Safe State Predicate - Example

Alloc Max Avail Need

A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Three resources: A, B, C (10, 5, 7 instances each)

Consider the snapshot of the system at this time Max - alloc

System is in a safe state, since the sequence <P1, P3, P4, P2, P0> satisfy the
safety criteria.

4
4

7CMSC 412 – S17 (lect 10)

Resource Request Algorithm
(1) If Requesti <= Needi then goto 2

– otherwise - the process has exceeded its maximum claim

(2) If Requesti <= Available then goto 3

– otherwise process must wait since resources are not available

(3) Check request by having the system pretend that it has

allocated the resources by modifying the state as follows:

– Available = Available - Requesti

– Allocation = Allocation + Requesti

– Needi = Needi - Requesti

� Find out if resulting resource allocation state is safe, otherwise

the request must wait.

8CMSC 412 – S17 (lect 10)

Managing Memory

� Main memory is big, but what if we run out
– use virtual memory

– keep part of memory on disk

• bigger than main memory

• slower than main memory

� Want to have several program in memory at once
– keeps processor busy while one process waits for I/O

– need to protect processes from each other

– have several tasks running at once

• compiler, editor, debugger

• word processing, spreadsheet, drawing program

� Use virtual addresses
– look like normal addresses

– hardware translates them to physical addresses

5
5

9CMSC 412 – S17 (lect 10)

Advantages of Virtual Addressing

� Can assign non-contiguous regions of physical

memory to programs

� A program can only gain access to its mapped pages

� Can have more virtual pages than the size of physical

memory

– pages that are not in memory can be stored on disk

� Every program can start at (virtual) address 0

