
CMSC 412 Midterm #1 (Spring 2016)

Name _________________________ Signature ________________________

(1) This exam is closed book, closed notes, and closed neighbor. No calculators are permitted. Violation of any of

these rules will be considered academic dishonesty.

(2) You have 70 minutes to complete this exam. If you finish early, you may turn in your exam at the front of the

room and leave. However if you finish during the last ten minutes of the exam please remain seated until the

end of the exam so you don't disturb others. Failure to follow this direction will result in points being deducted

from your exam.

(3) Write all answers on the exam. If you need additional paper, I will provide it. Make sure your name is on any

additional sheets.

(4) Partial credit will be given for most questions assuming I can figure out what you were doing.

(5) Please write neatly. Print your answers if your handwriting is hard to read. If you write something, and wish to

cross it out, simply put an X through it. Please indicate if your answer continues onto another page.

(6) Cell phones must be turned off (not just vibrate) during the exam. A cell phone ringing during the exam will

result in 10 points being deducted from your score.

Question Possible Score

1 20

2 20

3 16

4 12

5 12

6 20

Total 100

1.) (20 points) Define and explain the following terms:

a) OS Kernel

b) Multi-level feedback queue scheduler

c) Spawn system call (compared to fork)

d) Dispatcher

2.) (20 points) - Synchronization

Given an implementation of general (counting) semaphores, implement bounded counting
semaphores where each semaphore is declared with initial values, but also a maximum value. A
V operation on a bounded counting semaphore that is at its maximum value should return
immediately and not change the state of the system. P works the same as a general semaphore.

CreateBoundedSemaphore(int max, int initialValue):

Pbounded

Vbounded

3.) (16 Points) Deadlock

a) (7 points) With multiple instances of a resource, why is circular wait only a necessary and
not a sufficient condition for deadlock?

b) (9 points) Is this system in a safe state? If so show a safe sequence for it.

Three resources: A, B, C (10, 5, 7 instances each). The snapshot of the system:

 Alloc Max Avail Need

 A B C A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

4.) (12 points) Policy vs. Mechanism: Circle if the following are policies or mechanisms.

Policy Mechanism Users must change their passwords every 60 days

Policy Mechanism An operating system uses a timer to reclaim the cores from user processes

Policy Mechanism Processes owned by root have higher priority than normal user processes

Policy Mechanism User’s files are readable only by that user and their professor

Policy Mechanism An operating system includes semaphore system calls for synchronization

Policy Mechanism A list of runnable processes is stored in a heap

5.) (14 points) Process Manipulation

a) In GeekOS, the kill system call could not call Exit directly. However, the setup_Frame

code for handling a SIGKILL could call Exit, Why?

b) In GeekOS, why is turning off interrupts (i.e. calling Disable_Interrupts) not enough

to ensure atomic access to a critical section?

6.) (20 points) - project

a) In project #2, Complete_Handler only needed to POP the signal number and not the

address of the "signal trampoline" (supplied by Sys_RegDeliver) even though

Setup_Frame pushed them both. Why?

b) In projects 0 through 2, even if you didn’t care about memory protection for user
processes, why is it necessary to have the base and limit registers in the project for user
processes?

c) In GeekOS, you want to add a system call that returns the current core a process is
running on. How would your system call figure this out?

