

Viruses

- Most common on systems with little security
 - easy to write to boot blocks, system software
 - never run untrusted software with special privileges
 - Don't perform daily operations with root/system privileges
- Possible to write system independent viruses
 - MS Word virus
 - uses macros to call into the OS
 - HTML (javascript)
 - Flash

CMSC 412 – S16 (lect 23)

Project #6 Notes

• Uid

- First process has uid of 0
- Spawned processes
 - Inherit uid of parent
 - Unless setuid bit is set on program to run, then the uid of the owner of that file is used

• ACLs

- First ACL entry is owner
- Others are for other users
 - Can delete these entires with setACI(file, uid, 0)
- Uid 0 can open any file regardless of ACLs

Access Matrix

- Abstraction of protection for objects in a system.
 - Rows are domains (users or groups of users)
 - Columns are objects (files, printers, etc.)
 - Items are methods permitted by a domain on an objects
 - read, write, execute, print, delete, ...
- Representing the Table
 - simple representation (dense matrix) is large
 - sparse representation possible: each non-zero in the matrix
 - observation: same column used frequently
 - represent groups of users with a name and just store that
 - create a default policy for some objects without a value
- Revocation of access
 - when are access rights checked?
 - selective revocation vs. global

Access Matrix

	F1	F2	F3	Laser Printer	
D1	read		execute		
D2			execute	print	
D3	read, write		execute		
D4			execute		
D5		delete			

- Rows represent users or groups of users
- Columns represent files, printers, etc.

Capabilities

- Un-forgeable Key to access something
- Implementation: a string
 - I.e. a long numeric sequence for a copier
- Implementation: A protected memory region
 - tag memory (or procedures) with access rights
 - example x86 call gate abstraction
 - permit rights amplification

Monitoring

- Record (log) significant events
 - attempts to login to the system
 - changes to selected files or directories
- Possible to compromise the log
 - the user or software breaking in could delete all or part of the logs
 - could record logs to non-erasable storage
 - have a line printer attached to the machine
 - use DVD-ROM drives
 - send data to a secure remote host

Tripwire

- Compute a set of expectorations about system
 - Hash of file contents
 - Dates on files
- Store database of values
 - On read-only media
 - Offline
- Periodically
 - Compare database to current system
 - Report any differences

Encryption: protecting info from being read

• Given a message m

- use a key k, and function E_k to compute $E_k(m)$
- store or send only $E_k(m)$
- use a second second key k and function $D_{k'}$ such that
 - $D_{k'}(E_k(m)) = m$
- E_k and $D_{k'}$ need not be kept a secrete
- If k=k' it's called private key encryption
 - need to keep k secret
 - example AES-256
- if k != k', it's called public key encryption
 - need only keep one of them secret
 - if k' is secret, anyone can send a private message
 - if k is secret, it is possible to "sign" a message
 - still need a way to authenticate k or k' for a user
 - example RSA

Public Key Encryption

- Split into public and private keys
 - public key used to encrypt messages
 - publish this key widely
 - private key used to decrypt messages
 - keep this key a secret
- RSA
 - algorithm for computing public/private key pairs
 - based on problems involved in factoring large primes
 - for an n bit message P, $C = (P^e \mod n)$, and $P = (C^d \mod n)$
- Other Public Key Algorithms
 - knapsack
 - given a large collection of objects with different weights
 - public key is the total weight of a subset of the objects
 - private key is the list of objects

One Time Pad

- Key Idea: randomness in key
- Create a random string as long as the message
 - each party has the pad
 - xor each bit of the message with the a bit of the key
- Almost impossible to break
- Some practical problems
 - need to ensure key is not captured
 - a one bit drop will corrupt the rest of the message

Secure Socket Layer

- Goal:
 - Provide secure access to remote services
 - Authenticate remote servers to local users
 - Allow remote systems to authenticate users
 - Permit encrypted communication
- Approach
 - Public Key Cryptography
 - Certificates (signed by certificate authorities)
 - Sever sends:
 - Certificate (signed use CA's private key)
 - Certificate contains server's public key
 - Client responds by encrypting reply using servers pub key
 - Server checks response with private key

CMSC 412 - S16 (lect 23)

Sending Data

• Data is split into *packets*

- limited size units of sending information
- can be
 - fixed sized (ATM)
 - variable size (Ethernet)
- Need to provide a destination for the packet
 - need to identify two levels of information
 - machine to send data to
 - comm abstraction (e.g. process) to get data
 - address may be:
 - a globally unique destination
 - for example every host has a unique id
 - may unique between hops
 - unique id between two switches

TCP/IP Protocol

- Name for a family of Network and Transport layers
 - can run over many link layers:
 - Arpanet, Ethernet, Token Ring, SLIP/PPP, T1/T3, etc.
- IP Internet Protocol
 - network level packet oriented protocol
 - 32 bit host addresses (dotted quad 128.8.128.84)
 - 8 bit protocol field (e.g. TCP, UDP, ICMP)
- TCP Transmission Control Protocol
 - transport protocol
 - end-to-end reliable byte streams
 - provides ports for application specific end-points
- UDP- user datagram protocol
 - transport protocol
 - unreliable packet service
 - provides ports for application specific end-points

TCP/IP History Arpanet was the origin of today's Internet started in 1969 to connect universities and DoD sites early example of packet switched network original links were 64kbps and 9.6kpbs • TCP/IP v4 - started in use Jan 1, 1983 – This was a *flag day* all systems had to change to the new protocol at once with the modern Internet this would be hard to do • TCP/IP v6 Moves to 128 bit addresses

- Simplified packet header

Subnet Addressing

- Single site which has many physical networks
 - Only local routers know about all the physical nets
 - Site chooses part of address that distinguishes between physical networks
- subnet mask: splits the IP address into two parts
 - /xx notation defines boundary where xx is the number of bits in part 1
 - First part is network mask
 - Second part is address within that network
- Common /24 site mask 255.255.255.0
 - use 24 bits represent physical net
 - Final 8 bits represent host

Routing

- How does a packet find its destination?
 - problem is called routing
- Several options:
 - source routing
 - end points know how to get everywhere
 - each packet is given a list of hops before it is sent
 - hop-by-hop
 - each host knows for each destination how to get one more hop in the right direction
- Can route packets:
 - per session
 - each packet in a connection takes same path
 - per packet
 - packets may take different routes
 - possible to have out of order delivery

Routing IP Datagrams

• Direct Delivery:

- a machine on a physical network can send a physical frame directly to another
- transmission of an IP datagram between two machines on a single physical network does not involve routers.
 - Sender encapsulates datagram into a physical frame, maps destination IP address to a physical address and sends frame directly to destination
- Sender knows that a machine is on a directly connected network
 - compare network portion of destination ID with own ID if these match, the datagram can be sent directly
- Direct delivery can be viewed as the final step in any datagram transmission

Routing Datagrams (cont.)

• Indirect Delivery

- sender must identify a router to which a datagram can be sent
- sending processor can reach a router on the sending processor's physical network (otherwise the network is isolated!)
- when frame reaches router, router extracts encapsulated datagram and IP software selects the next router
 - datagram is placed in a frame and sent off to the next router

Table Driven Routing

- Routing tables on each machine store information about possible destinations and how to reach them
- Routing tables only need to contain network prefixes, not full IP addresses
 - No need to include information about specific hosts
- Each entry in a routing table points to a router that can be reached across a single network
- Hosts and routers decide
 - can packet be directly sent?
 - which router should be responsible for a packet (if there is more than one on physical net)

Algorithm: RouteDatagram (Datagram, RoutingTable)

Extract destination IP address, D, from datagram and compute network prefix N

If N matches any directly connected network address

[Direct delivery]

Else if the table contains a host-specific route for D [send datagram to next-hop specified in table]

Else if the table contains a route for network N [send datagram to next-hop specified in table]

Else if the table contains a default route [send the datagram to the default route]

Else declare a routing error

Algorithm from Comer book: Internetworking with TCP/IP: volume 1 [Third Edition]

CMSC 412 - S16 (lect 23)

copyright 2004 Jeffrey K. Hollingsworth

22 22