
1CMSC 412 – S16 (lect 18)

Announcements

� Midterm #2 is Thursday 4/14 in class

� Project #5 is out

2CMSC 412 – S16 (lect 18)

Modified Linked Allocation (FAT)

� Section of disk contains a table

– called the file allocate table (FAT)

– used in MS-DOS

� Directory entry contains the block number of the first

block in the file

� Table entry contains the number of the next block in

the file

� Last block has a end-of-file value as a table entry

directory entry

ith block corresponds to the ith FAT entry

last entry

(for a file)

has EOF ptr FAT

3CMSC 412 – S16 (lect 18)

Performance Issues

� FAT

– simple, easy to implement

– faster to traverse than linked allocation

– random access requires following links

– files can’t have holes in them

� Hybrid indirect

– fast access to any part of the file

– files can have holes in them

– more complex

4CMSC 412 – S16 (lect 18)

Free Space Management

� How do we find a disk block to allocate?

� Bit Vectors

– array of bits (one per block) that indicates if a block is free

– compact so can keep in memory

• 100 GB disk, 4K blocks -> 6MB per disk (0.003%)

– easy to find long runs of free blocks

� Linked lists

– each disk block contains the pointer to the next free block

– pointer to first free block is keep in a special location on disk

� Run length encoding (called counting in book)

– pointer to first free block is keep in a special location on disk

– each free block also includes a count of the number of
consecutive blocks that are free

5CMSC 412 – S16 (lect 18)

DOS Directories

� Root directory

– immediately follows the FAT

� Directory is a table of 32 byte entries

– 8 byte file name, 3 byte filename extension

– size of file, data and time stamp, starting cluster number of
the file, file attribute codes

– Fixed size and capacity

� Subdirectory

– This is just a file

– Record of where the subdirectory is located is stored in the
FAT

6CMSC 412 – S16 (lect 18)

Implementing Directories

� Linear List

– array of names for files

– must search entire list to find or allocate a filename

– sorting can improve search performance, but adds
complexity

� Hash table

– use hash function to find filenames in directory

– needs a good hash function

– need to resolve collisions

– must keep table small and expand on demand since many
directories are mostly empty

7CMSC 412 – S16 (lect 18)

Unix Directories

� Space for directories are allocated in units called

chunks

– Size of a chunk is chosen so that each allocation can be
transferred to disk in a single operation

– Chunks are broken into variable-length directory entries to
allow filenames of arbitrary length

– No directory entry can span more than one chunk

– Directory entry contains

• pointer to inode (file data-structure)

• size of entry

• length of filename contained in entry (up to 255)

• remainder of entry is variable length - contains file name

8CMSC 412 – S16 (lect 18)

inodes

� File index node

� Contains:

– Pointers to blocks in a file (direct, single indirect, double
indirect, triple indirect)

– Type and access mode

– File’s owner

– Number of references to file

– Size of file

– Number of physical blocks

9CMSC 412 – S16 (lect 18)

Unix directories - links

� Each file has unique inode but it may have multiple

directory entries in the same filesystem to reference

inode

� Each directory entry creates a hard link of a filename

to the file’s inode

– Number of links to file are kept in reference count variable in
inode

– If links are removed, file is deleted when number of links
becomes zero

� Symbolic or soft link

– Implemented as a file that contains a pathname

– Symbolic links do not have an effect on inode reference
count

10CMSC 412 – S16 (lect 18)

File Lookup (/usr/bin/vi)

Indirect

Index

Root inode =2

usrDirectory Entry

binDirectory Entry

viDirectory Entry

Inode

Inode

Data Block

11CMSC 412 – S16 (lect 18)

Using UNIX filesystem data structures
� Example: find /usr/bin/vi

– from Leffler, McKusick, Karels and Quarterman

– Search root directory of filesystem to find /usr

• root directory inode is, by convention, stored in inode #2

• inode shows where data blocks are for root directory - these

blocks (not the inode itself) must be retrieved and searched for
entry user

• we discover that the directory user’s inode is inode #4

– Search user for bin

• access blocks pointed to by inode #4 and search contents of
blocks for entry that gives us bin’s inode

• we discover that bin’s inode is inode #7

– Search bin for vi

• access blocks pointed to by inode #7 and search contents of
block for an entry that gives us vi’s inode

• we discover that vi’s inode is inode #7

– Access inode #7 - this is vi’s inode

12CMSC 412 – S16 (lect 18)

How to Improve Speed?

� Use A Cache

� Name-to-Inode lookup

– Hash on full path name

– Find inode without and disk accesses on a hit

13CMSC 412 – S16 (lect 18)

Mount System Call

� How to attach a file system into a name space?

� Simple Idea:

– use letters C, D, E, etc.

– use volume names (VMS) – fixed length string

� Better Idea:

– Allow attachment at arbitrary points in namespace

– Designate one tree as the “root” file system

– Others are attached to the root

� Mount used in:

– UNIX

– Windows (NTFS mount points)

– GeekOS

14CMSC 412 – S16 (lect 18)

Log Structured File Systems

� Key Idea

– Use transactions like model for filesystem updates

� Write data to a log (also called a journal)

– Records meta data changes

– Records data blocks written

– File operation is committed once it is to the log

– Partial updates to log are lost on failure

� Next Step

– Eliminate the filesystem and just keep the log

– Requires a process called a cleaner

• Copies old data from log to head of log to allow compaction

