
1CMSC 412 – S16 (lect 17)

Announcements

� Reading Chapter 12

� Project #4 is Due Monday at 5:00 PM

2CMSC 412 – S16 (lect 17)

File Consistency semantics

� How do multiple processes see updates to files

� UNIX

– writes are visible immediately

– have a mode to permit processes to share file pointers (“dup”)

� AFS

– open/close semantics (keep a local copy)

• “copy” the file on open

• write-back on close

� Immutable files

– once made visible to the world, the file never changes

• usually done by attaching a version # to the filename

– new versions of the file must be given a new name

3CMSC 412 – S16 (lect 17)

Filesystems

� Raw Disks can be viewed as:

– a linear array of fixed sized units of allocation, called blocks

• assume that blocks are error free (for now)

• typical block size is 512 to 4096 bytes

– can update a block in place, but must write the entire block

– can access any block in any desired order

• blocks must be read as a unit

• for performance reasons may care about “near” vs. “far”
blocks (but that is covered in a future lecture)

� A Filesystem:

– provides a hierarchical namespace via directories

– permits files of variable size to be stored

– provides disk protection by restricting access to files based
on permissions

4CMSC 412 – S16 (lect 17)

Allocation Methods

� How do we select a free disk block to use?

� Contiguous allocation

– allocate a contiguous chunk of space to a file

– directory entry indicates the starting block and the length of the file

– easy to implement, but

• how to satisfy a given sized request from a list of free holes?

• two options

– first fit (find the first gap that fits)

– best fit (find the smallest gaps that is large enough)

• What happens if one wants to append to file?

– from time to time, one will need to repack files

5CMSC 412 – S16 (lect 17)

Linked Allocation

� Each file is a linked list of disk blocks, blocks can be
located anywhere
– Directory contains a pointer to the first and last block of a file

– Each block contains a pointer to the next block

– This is essentially a linked-list data structure

� Problems:
– Best for sequential access data structures

• requires sequential access whether you want to or not!

– Reliability - one bad sector and all portions of your file
downstream are lost

� Useful fix:
– Maintain a separate data structure just to keep track of

linked lists

– Data-structure includes pointers to actual blocks

6CMSC 412 – S16 (lect 17)

Indexed Allocation

� Bring all pointers together in an index block

– Each file has its own index block - ith entry of index block points to
ith block making up the file

� How large to make an index block?

– To avoid a fixed maximum file size, index block must be extensible

� Linked scheme:

– maintain a linked list of indexed blocks

� Multilevel index:

– Index block can point to other index blocks (which point to index
blocks), which point to files

� Hybrid multi-level index

– first n blocks are from a fixed index

– next m blocks from an indirect index

– next o blocks from a double indirect index

7CMSC 412 – S16 (lect 17)

Hybrid Multi-level Index (UNIX)
� Observations

– most files are small

– most of the space on the disk is consumed by large files

� Want a flexible way to support different sized

– assume 4096 byte block

– first 12 blocks (48 KB) are from a fixed index

– next 1024 blocks (4 MB) from an indirect index

– next 10242 blocks (4 GB) from a double indirect index

– final 10243 blocks (4 TB) from a triple indirect index
directory entry

Indirect

Index

double indirect index

