
1CMSC 412 – S16 (lect 14)

Announcements

� Project #4 teams emailed out

� Reminder about re-grade deadline

� Tuesday March 29th (11:00 AM)

� Reading Chapter 10 (in 8th Ed)

2CMSC 412 – S16 (lect 14)

Access Large Memory

� Problem:

– Even with Super pages, limited TLB reach

� Solution:

– Add one extra large segment in addition to VM

– Can be any sized contiguous region of memory

– Can map into any part of a processes address space

– Consists of three fields:

• Virtual base (starting addr in virtual memory, page aligned)

• Physical base (starting addr in physical memory, page aligned)

• Length (in multiple of machine’s page size)

– Hardware always consults this mapping regardless of TLB

3CMSC 412 – S16 (lect 14)

Page Replacement Algorithms
� FIFO

– Replace the page that was brought in longest ago

– However

• old pages may be great pages (frequently used)

• number of page faults may increase when one increases number of
page frames (discouraging!)

– called belady’s anomaly

– 1,2,3,4,1,2,5,1,2,3,4,5 (consider 3 vs. 4 frames)

� Optimal

– Replace the page that will be used furthest in the future

– Good algorithm(!) but requires knowledge of the future

– With good compiler assistance, knowledge of the future is
sometimes possible

4CMSC 412 – S16 (lect 14)

Page Replacement Algorithms

� LRU

– Replace the page that was actually used longest ago

– Implementation of LRU can be a bit expensive

• e.g. maintain a stack of nodes representing pages and
put page on top of stack when the page is accessed

• maintain a time stamp associated with each page

� Approximate LRU algorithms

– maintain reference bit(s) which are set whenever a page is
used

– at the end of a given time period, reference bits are cleared

5CMSC 412 – S16 (lect 14)

FIFO Example (3 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (2,3,4) fault, replacement

• access 1 - (3,4,1) fault, replacement

• access 2 - (4,1,2) fault, replacement

• access 5 - (1,2,5) fault, replacement

• access 1- (1,2,5)

• access 2 - (1,2,5)

• access 3 - (2,5,3) fault, replacement

• access 4 - (5,3,4) fault, replacement

• access 5 - (5,3,4)

– 9 page faults

6CMSC 412 – S16 (lect 14)

FIFO Example (4 frames)

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

• access 1 - (1) fault

• access 2 - (1,2) fault

• access 3- (1,2,3) fault

• access 4 - (1,2,3,4) fault, replacement

• access 1 - (1,2,3,4)

• access 2 - (1,2,3,4)

• access 5 - (2,3,4,5) fault, replacement

• access 1- (3,4,5,1) fault, replacement

• access 2 - (4,5,1,2) fault, replacement

• access 3 - (5,1,2,3) fault, replacement

• access 4 - (1,2,3,4) fault, replacement

• access 5 - (2,3,4,5) fault, replacement

– 10 Page faults

7CMSC 412 – S16 (lect 14)

Thrashing

� Virtual memory is not “free”
– can allocate so much virtual memory that the system spends

all its time getting pages

– the situation is called thrashing

– need to select one or more processes to swap out

� Swapping
– write all of the memory of a process out to disk

– don’t run the process for a period of time

– part of medium term scheduling

� How do we know when we are thrashing?
– check CPU utilization?

– check paging rate?

– Answer: need to look at both

• low CPU utilization plus high paging rate --> thrashing

8CMSC 412 – S16 (lect 14)

Working Sets and Page Replacement

� Programs usually display reference locality

– temporal locality

• repeated access to the same memory location

– spatial locality

• consecutive memory locations access nearby memory
locations

– memory hierarchy design relies heavily on locality reference

• sequence of nested storage media

� Working set

– set of pages referenced in the last delta references

Small

Very Fast
Large

Very Slow

Working Set Size

9CMSC 412 – S16 (lect 14)

Improving Heap Locality

� Malloc (or new) don’t ensure locality among requests

– Two calls to malloc could get memory on different cache
lines, pages, etc.

� Option 1:

– Malloc a large chunk of memory and parcel it out yourself

� Option 2:

– Add a “near” hint parameter to malloc

– Indicates that memory should be allocated near the target
location

• It’s only a performance hint, and malloc can ignore it

• Allows locality improvement without major changes

10CMSC 412 – S16 (lect 14)

Preventing Thrashing

� Need to ensure that we can keep the working set in

memory

– if the working sets of the processes in memory exceed total
page frames, then we need to swap a process out

� How do we compute the working set?

– can approximate it using a reference bit

11CMSC 412 – S16 (lect 14)

Implementation Issues

� How big should a page be?

– want to trade cost of fault vs. fragmentation

• cost of fault is: trap + seek + latency + transfer

– Does the OS page size have to equal the HW page size?

• no, just needs to be a multiple of it

� How does I/O relate to paging

– if we request I/O for a process, need to lock the page

• if not, the I/O device can overwrite the page

� Can the kernel be paged?

– most of it can be.

– what about the code for the page fault handler?

